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Detecting determinism with improved sensitivity in time series:
Rank-based nonlinear predictability score
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The rank-based nonlinear predictability score was recently introduced as a test for determinism in point
processes. We here adapt this measure to time series sampled from time-continuous flows. We use noisy Lorenz
signals to compare this approach against a classical amplitude-based nonlinear prediction error. Both measures
show an almost identical robustness against Gaussian white noise. In contrast, when the amplitude distribution
of the noise has a narrower central peak and heavier tails than the normal distribution, the rank-based nonlinear
predictability score outperforms the amplitude-based nonlinear prediction error. For this type of noise, the
nonlinear predictability score has a higher sensitivity for deterministic structure in noisy signals. It also yields
a higher statistical power in a surrogate test of the null hypothesis of linear stochastic correlated signals. We
show the high relevance of this improved performance in an application to electroencephalographic (EEG)
recordings from epilepsy patients. Here the nonlinear predictability score again appears of higher sensitivity to
nonrandomness. Importantly, it yields an improved contrast between signals recorded from brain areas where the
first ictal EEG signal changes were detected (focal EEG signals) versus signals recorded from brain areas that
were not involved at seizure onset (nonfocal EEG signals).
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I. INTRODUCTION

The ultimate goal of many scientific disciplines is to
predict the temporal evolution of some dynamics based on
observations of the dynamics’ states in the recent past and
present. Sometimes, however, one does not aim at an actual
prediction but rather at quantifying the degree of a dynamics’
predictability. The feature of predictability can be exploited
in applications as distinct as, for example, damage assessment
in structural engineering [1], channel equalization and timing
recovery in telecommunications [2], modeling the dynamical
response of granular material to large strain in critical state
soil dynamics [3], the automatic identification of cover songs
in music information retrieval [4], the understanding of El
Niño and La Niña networks in atmospheric science [5],
the assessment of heart-rate and arterial pressure regulation
in cardiovascular physiology [6], or the characterization
of electroencephalographic (EEG) recordings during photic
stimulation in clinical neurophysiology [7]. As we detail
below, the assessment of predictability from EEG signals can
furthermore help to localize the epileptogenic zone in the
diagnostics of epilepsy patients.

The framework of nonlinear time series analysis comprises
different approaches to assess predictability, including local
methods in reconstructed state spaces (e.g., Refs. [8–17]).
These are based on the following common basic idea. For
smooth deterministic dynamics, similar instantaneous states
remain similar in their immediate future. To evaluate this cri-
terion for determinism, these measures quantify the goodness
with which the future evolution of reference states can be pre-
dicted from the future evolutions of states which are similar to
the reference states. The similarity used to select the predicting
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states is quantified by spatial proximity in reconstructed state
spaces. Accordingly, these states are called nearest neighbors.
The future evolution of the reference state and its nearest
neighbors can be compared, for example, directly on the
signal amplitudes [8–11,15,16] or on directional vectors in
the reconstructed state space [13]. Different statistics, such as
a normalized root-mean-square error [8,15,16], mean-square
error [9,16], median-square error [13], decimated independent
individual errors [11], or the correlation coefficient between
predicted and actual states [10], can be used to quantify
the goodness of these predictions. Further, local methods
in state space quantify predictability without defining an
explicit predictor, e.g., via the average alignment of directional
vectors [12], continuity between exceptionally close neighbors
and their images [14], or the mean variances of the nearest-
neighbor images [17].

A representative of local methods in state spaces is the
locally constant nonlinear prediction error (see Refs. [8,9,15]
and references therein). Here the time indices of k nearest
neighbors are determined and incremented by a prediction
horizon h. The mean of the signal amplitude sampled at these
incremented times is used to predict the signal amplitude a
prediction horizon after the time of the reference state. The
root-mean-square error is used to quantify the goodness of
the prediction. We here refer to this classical approach as
amplitude-based nonlinear prediction error E . We use E as
benchmark for the rank-based nonlinear predictability score
S. The principle of S was recently introduced to detect
determinism in point processes [18]. We here adapt S to be
applicable to time series. In contrast to E , the measure S is not
based on signal amplitudes but rather on ranks in sorted lists
of amplitude differences. The normalization of the nonlinear
predictability score S is based on the expected values for
completely predictable and completely unpredictable signals.
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It is well established that predictability is a necessary
yet not sufficient criterion for determinism. Predictability in
a time series can mean that the dynamics is deterministic,
noisy deterministic, or simply a stochastic process with
some memory. Accordingly, tests for determinism should be
sensitive to predictability in time series. They can, however,
never be fully specific for determinism since predictability
can also be caused by temporal linear correlation. This limited
specificity, which is no peculiarity of tests for determinism, but
rather common to many nonlinear signal analysis approaches,
can be addressed using the concept of surrogates [19,20]. This
concept allows one to test whether the results of some nonlinear
predictability measure are consistent with the null hypothesis
that the signal was measured from a linear stochastic process
whose memory results in temporal correlations. Only in
combination with surrogate null hypothesis testing can tests
for predictability be used as tests for determinism, as stressed,
for example, already in Refs. [11,12].

The aim of this paper is to establish the rank-based nonlinear
predictability score S as a sensitive measure for nonlinear
deterministic structure in time series. As a benchmark we
use the classical amplitude-based nonlinear prediction error
E . Both measures belong to the family of local methods
in state spaces. Therefore, we start by describing what is
common to both measures. That is the selection of k nearest
neighbors in reconstructed state spaces (Sec. II A) and the
reasoning of which constraints are applied in this selection
(Sec. II B). In Sec. II C 1 we review the definition of the
classical amplitude-based nonlinear prediction error, and in
Sec. II C 2 we adapt the rank-based nonlinear predictability
score to be applicable to time series. The sensitivity of both
measures is at first compared under controlled conditions.
For this purpose we use signals from the Lorenz dynamics
(Sec. II D 1) which we superimpose with noise. Importantly,
apart from Gaussian noise, we use noise with non-normally
distributed amplitudes (Sec. II D 2). In Sec. II E we briefly
specify the type of surrogates we use and the underlying null
hypothesis. After the validation of our approach on signals
from models, we analyze real-world signals. For this purpose,
we use the Bern-Barcelona EEG database (Sec. II F). We close
our Methods section by reasoning the choice of parameters
(Sec. II G). The Results section is divided into the presentation
of findings for the noisy Lorenz signals (Sec. III A) and the
EEG data (Sec. III B). The parameter dependence of our results
is summarized in Sec. III C.

II. METHODS

A. Selection of predictor indices

The first steps of analysis are identical for the amplitude-
based nonlinear prediction error E and the rank-based non-
linear prediction score S. We reconstruct the state space
using delay coordinate embeddings and sequentially use all
delay vectors as reference states. For each reference state we
determine the time indices of its nearest neighbors. The time
index of the reference state and the ones of its nearest neighbors
are then incremented by a prediction horizon h. We use the
signal sampled at the incremented nearest-neighbor indices to
make a prediction about the signal at the incremented reference

state index. The two approaches differ only in the form of
the prediction and in the way they quantify the goodness
of the prediction. As a consequence of the common steps
of analysis, both measures have the same parameters. These
are the embedding dimension m and time delay τ used for
the state space reconstruction, the prediction horizon h, the
number of nearest neighbors k, and a decorrelation window
length w to exclude temporally close states from the nearest
neighbors.

In practice, suppose that a time series xi with i = 1, . . . ,N

was measured from some dynamics. To reconstruct the
dynamics from the time series by means of delay coordinates,
we form embedding vectors as follows [21]:

xi = (xi,xi−τ , . . . ,xi−(m−1)τ ) (1)

for i = η + 1, . . . ,N , with the embedding window η = (m −
1)τ . Each vector xi represents the state of the dynamics at the
time corresponding to index i. In the next step, we calculate
Euclidean interstate distances across all pairings (i,j = η +
1, . . . ,N) of embedding vectors

vi,j =
√√√√

m∑
d=1

(xi,d − xj,d )2, (2)

where d indexes the component of the delay vector. For each
reference state xi0 (i0 = η + 1, . . . ,N − h) these distances
are used to determine the indices of its k spatially nearest
neighbors: {j0,r}(r=1,...,k). These are the j indices of the k small-
est entries in the set {vi0,j }(j=η+1,...,N−h;|i0−j |>w). Importantly,
thereby we exclude points that are closer than w in time. This
is necessary to ensure that nearest neighbors are taken from
neighboring state space trajectory segments rather than from
the same segment [22].

As input for the subsequent steps of analysis we use indices
of the reference point and its nearest neighbors incremented by
the prediction horizon h, i.e., i0 + h and j0,r + h. That explains
why we excluded states that are closer to the end of the signal
than the prediction horizon h in the ranges specified above. If
we would not exclude this range, we would have predictions
beyond the end of the signal.

We can now formulate the necessary but not sufficient
criterion for determinism given above in terms of our indices.
For smooth deterministic dynamics, similar states at present
times identified by i0 and j0,r should evolve to similar states
at future times identified by i0 + h and j0,r + h.

B. Testing for predictability versus making predictions

In the selection of nearest neighbors we do not impose j0 <

i0. In consequence, the nearest neighbors in general include
states from the future of the reference state. Neither do we
divide the data into a training and testing set. This is in contrast
to some of the techniques introduced and discussed in Refs. [8–
10,15]. The reasoning leads us to an important conceptual
distinction. We do not aim to make a concrete prediction that
the dynamics will be in a certain state at a certain time. Neither
is the performance of our approach to be assessed by the
goodness of the prediction. Importantly, we do not vary any
model parameters, such as the coefficients in a locally linear
model, to optimize the prediction. Furthermore, none of the
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analysis parameters (i.e., embedding dimension m, time delay
τ , prediction horizon h, number of nearest neighbors k, and
decorrelation window length w) is optimized. The role of these
analysis parameters is further discussed in Secs. II G and III C.

Our aim is to test for predictability. Accordingly, we use
as nearest neighbors states that are similar to the reference
state, regardless of when the system attained them. We use
them regardless of whether they occurred before or after i0.
The only requirement is that they are temporally separate
from i0 by at least the decorrelation window w. As a test
for predictability we then use the measures E and S to
quantify the degree to which these similar instantaneous states
undergo a similar evolution in their immediate future. We
assess the performance of these measures in different ways.
We determine, for example, the minimal signal-to-noise ratio
at which a signal can be distinguished from pure white noise.
Another criterion is the power they yield as test statistics in a
surrogate null hypothesis test, described in detail in Sec. II E.
In particular, we always compare our results against a baseline,
for example, pure white noise or the surrogates. This inclusion
of a baseline further justifies not imposing j0 < i0 [15]. If
required, the approaches presented below could readily be
adapted to include this constraint.

C. Testing for predictability

1. Amplitude-based nonlinear prediction error E
For the classical nonlinear prediction error (see

Refs. [8,9,15] and references therein), the predictability is
evaluated on the signal amplitudes. In particular, one considers
the amplitudes at the indices of the reference point and its
nearest neighbors incremented by the prediction horizon h,
i.e., at i0 + h and j0,r + h. We use the average 〈xj0,r+h〉 taken
across r = 1, . . . ,k to predict xi0+h. The nonlinear prediction
error E is then directly defined by the root-mean-square error
of this prediction normalized by the standard deviation σx of
the signal,

E =
√

1
N−η−h

∑N−h
i0=η

(
xi0+h − 〈

xj0,r+h

〉)2

σx

. (3)

Recalling the definition of the standard deviation, it can be read
in this context as the root-mean-square error when the mean is
used for the prediction. For predictable signals we get positive
E values close to zero. In contrast, for uncorrelated noise the
expected value of E approaches 1 from above upon increasing
k. For the value used here, k = 5, we derived numerically that
the expected value of E is approximately 1.096.

2. Rank-based nonlinear prediction score S
For the rank-based nonlinear prediction score S, we do not

directly evaluate signal amplitudes but rather ranks in sorted
lists of amplitude differences. Similarly to Refs. [12,14,17],
predictability is quantified without defining an explicit predic-
tor. For this purpose, we at first determine for i,j = η, . . . ,N

ui,j = |xi − xj |, (4)

which is equivalent to Eq. (2) with m = 1. We denote by gi0,j0

the ranks which ui0,j0 have in a sorted list of all amplitude
differences included in the set {ui0,j }j=η+1,...,N ;|i0−j |>w. The

number of differences in this set is denoted by Mi0 . For
w < i0 < N − w + 1 we have Mi0 = N − 2w − 1. Below
and above this range Mi0 increases linearly and reaches
Mi0 = N − w − 1 at i0 = 1 and i0 = N .

To test the above given criterion for predicability we again
compare the future evolution of the nearest neighbors with
the one of the reference state. For this purpose, we determine
the mean rank of the amplitude differences between xi0+h and
the k different xj0,r+h,

Ri0 = 1

k

k∑
r=1

gi0+h,j0,r+h. (5)

For complete predictability, this is the mean of the k lowest
ranks, and we get

Ri0 = k + 1

2
. (6)

We denote this lower boundary, which is independent of i0, by

RL = k + 1

2
. (7)

In contrast, for no predictability, nearest neighbors of i0 have
no predictive value h time steps later. Accordingly, gi0+h,j0,r+h

are just k random samples from a uniform distribution on the
integers 1, . . . ,Mi0 . In consequence, for no predictability, Ri0

has an expected value of

RU
i0

= Mi0 + 1

2
. (8)

Since k � Mi0 , we here neglect that the k samples are
taken without replacement. Using a general normalization
principle [23–26], we define the rank-based prediction score
as follows [18]:

S = 1

N − η − h

N−h∑
i0=1+η

RU
i0

− Ri0

RU
i0

− RL
. (9)

For complete predictability we get Ri0 = RL, and S takes its
maximal value of 1. In contrast, S is normally distributed with
an expected value of zero for no predictability, since here the
expected value of Ri0 is RU

i0
.

D. Signals

1. Lorenz signals

As exemplary model system we use Lorenz dynamics
with standard parameters as follows: ẋ(t) = 10(y(t) − x(t)),
ẏ(t) = 28x(t) − y(t) − x(t)z(t), ż(t) = x(t)y(t) − 8

3z(t). We
integrated this set of differential equations using a fourth-order
Runge-Kutta algorithm with step size of 0.005 time units.
The integrations were started at random initial conditions and
preiterations were used to let transients die out. As raw signal
we used xn = x(tn) for tn = n�t with n = 1, . . . ,N = 2560
and �t= 0.03 time units.

2. Noise

The raw Lorenz signals xn were distorted with white
additive measurement noise. Apart from Gaussian noise, we
used noise with distributions having narrower central peaks
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FIG. 1. (Color online) Relative frequencies of the noise ampli-
tudes ξl,n for different l determined in bins of 0.05. We use a
logarithmic scale for the ordinate to better resolve characteristics of
the distribution tails. The abscissa is truncated, and nonzero relative
frequencies are obtained for amplitudes towards ±∞. l = 1. Black
dashed line: l = 1; Green (light gray) solid line: l = 3; Black solid
line: l = 5.

and heavier tails than the normal distribution. To generate
the noise, we started with zero-mean unit-variance Gaussian
white noise ζn. The amplitude distribution was then altered by
applying ξl,n = (ζn)l for l = 1,3,5. To illustrate the effect of l,
we display the amplitude distributions in Fig. 1. All distribu-
tions are normalized to unit variance. Evidently, for l = 1 the
original Gaussian noise is maintained. With increasing l, the
values at the center of the peak are concentrated closer to zero.
In contrast, values in the tails are driven away from the center
towards even higher values. In consequence, for l = 3 and even
more so for l = 5, the noise consists of many small values and
some very high values. We vary the signal-to-noise ratio,

q = σ 2
xn

/σ 2
ξl,n

, (10)

from 10−6 to 106 sampled evenly on a logarithmic scale. We
furthermore include the cases q = 0 (noise-only) and q → ∞
(noise-free). For each signal-to-noise ratio and all l values,
we generate 250 independent realizations of the noisy signal.

E. Surrogates

Suppose we analyzed an experimental signal and obtained
some low value of the nonlinear prediction error E and
some high value of the nonlinear predictability score S.
As stated in the Introduction, this result by itself does not
provide sufficient evidence that the signal was measured from
a deterministic dynamics. Likewise, the dynamics could be
linear stochastic and the predictability which E and S detect
in the signal could reflect its autocorrelation caused by the
memory of the process. Even for memoryless linear stochastic
processes, autocorrelation and thereby predictability can be
caused simply by low-pass filtering the signal. Depending on
the parameters, in particular m, τ , and h, this autocorrelation
can lead to low values of E and high values of S. To test the
null hypothesis that the signal was measured from a linear
stochastic correlated process, we can use surrogate signals.

These surrogate signals are generated by randomizing the
original signal. In our case, this randomization is constrained
such that the surrogates have the same autocorrelation and
amplitude distribution as the original signal [27]. Any potential
nonlinear deterministic structure or nonstationary features of
the original signal are destroyed by the randomization. The
complete null hypothesis tested by this particular type of
surrogates is: ‘The dynamics is a stationary linear stochastic
correlated Gaussian process. The measurement function by
which the signal was derived from the dynamics is invertible
but potentially nonlinear. The autocorrelation, mean, and
variance of the underlying Gaussian process are such that
the measurement results in the autocorrelation, and amplitude
distribution of the observed time series.’ To test this null
hypothesis we generate a set of surrogates from independent
randomizations of the signal and calculate E and S from them.
In this way, we can estimate the mean values and variances
of E and S which we would expect if this null hypothesis
was true and given the signal’s amplitude distribution and
autocorrelation. If the result for the original signal deviates
significantly from the distribution of results obtained from the
surrogates, the null hypothesis is rejected.

Evidently, the power of this statistical surrogate null
hypothesis test depends on the sensitivity of our measures
E and S. The better the sensitivity for deterministic structure,
the higher the probability that the null hypothesis is correctly
rejected if it is false. If the signal was measured from a
deterministic dynamics but is strongly contaminated by noise,
then the null hypothesis is false. It will, however, depend
on the measure’s sensitivity if it is capable of detecting the
potentially subtle differences between the noisy signal and the
surrogates. Accordingly, we can assess the sensitivity of E
and S by quantifying the statistical power of a surrogate null
hypothesis test based on these measures in dependence on the
noise amplitude.

F. EEG signals

We analyze the Bern-Barcelona EEG database which is
available in Ref. [28] and which we published along with
our previous work [29]. This anonymized database comprises
intracranial EEG recordings from five epilepsy patients, which
were performed prior to and independently from the study
presented in Ref. [29] and the present study as part of the
epilepsy diagnostics in these patients. We refer to Sec. II A
of Ref. [29] for details on this diagnostics and recording
techniques.

The database comprises 3750 focal signal pairs and 3750
nonfocal signal pairs. Focal signals were recorded from brain
areas where the first ictal EEG signal changes were detected
as judged by expert visual inspection by at least two neurol-
ogists who are also board-certified electroencephalographers.
Nonfocal signals were recorded from brain areas that were not
involved at seizure onset. Importantly, also this delineation
of brain areas where the first ictal EEG signal changes were
detected was done prior to and independently from our study
as part of the epilepsy diagnostics. Both focal and nonfocal
signals include only seizure-free EEG activity. Individual
signal pairs were recorded simultaneously at neighboring
contacts of intracranial multicontact electrodes. The entirety
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of the signal pairs were selected at random from continuous
recordings of the seizure-free interval of the patients. We refer
to Sec. II B of Ref. [29] for details on this selection. Since, in
contrast to Ref. [29], our analysis is univariate, we only take
the first signals from the signal pairs, referred to as x signals
in Ref. [29].

The signals of the Bern-Barcelona EEG database have a
length of 20 s sampled at 512 Hz. We followed Ref. [29]
and low-pass filtered and down-sampled the signals prior
to the analysis. For this purpose, we used an eighth-order
Butterworth filter with a cut-off frequency of 40 Hz and
subsequently down-sampled the signals by a factor of 4,
resulting in a signal length of N = 2560 and a sampling time
of 7.8 ms.

The EEG recordings analyzed here were previously studied
in Ref. [29]. We provided these recordings, the source code,
and detailed results of this previous study in Ref. [28]. This
includes the source code to calculate E and to generate
surrogates. Results obtained for small subsets of the EEG
signals were published by others in Refs. [30,31]. We now
extend these resources by source code that allows for the
simultaneous calculation of S and E , as well as by the detailed
results obtained in the present study for the EEG recordings.

G. Choice of parameters and connection to previous work

In the first analysis of the Bern-Barcelona EEG database,
we analyzed these signals with regard to their nonrandomness,
nonlinear dependence, and nonstationarity [29]. The test for
nonrandomness was based on the nonlinear prediction error
E as a test statistics in combination with the surrogates also
used here. Accordingly, E results obtained in our previous

study [29] for the EEG can be used as a benchmark for S in our
present study. In the previous study detailed results were shown
for the following parameters: embedding dimension m = 8,
time delay τ = 4 sampling times, k = 5 nearest neighbors,
prediction horizon h = 4 sampling times, and decorrelation
window w = 19 sampling times. We therefore use the same
parameter setting here. We use it for the EEG signals and
also for the Lorenz signals. These are reasonable parameter
values for both types of signals but certainly not the optimal
ones. However, our aim is not to find the optimal parameters
for the individual signal types and measures. Rather, we want
to compare the measures E and S and avoid any in-sample
optimization of the parameters. That is the reason why we use
the values already used in Ref. [29] and discuss only briefly
the influence of these parameters in Sec. III C. With the same
reasoning, the preprocessing steps for the EEG signals are as
in Ref. [29]. This includes the use of N = 2560 samples for
the analysis. Accordingly, we also use the same number of
samples for the noisy Lorenz signals.

III. RESULTS

A. Noisy Lorenz signals

Figure 2 shows how the noise amplitude distribution
parameter l influences the noise robustness of the nonlinear
prediction error E and the nonlinear predictability score S.
At the noise-only case (q = 0) and very small q values, both
measures show results expected for unpredictable signals; the
mean values 〈E〉 and 〈S〉 obtained across the 250 independent
signal realizations are statistically consistent with 1.096 and 0,
respectively. On increasing q, 〈E〉 decreases and 〈S〉 increases,
reflecting the increased predictability. This predictability is
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FIG. 2. (Color online) Results for the noisy Lorenz signals in dependence on the signal-to-noise ratio q and amplitude distribution parameter
l. Error bars show the distribution means, 〈E〉 and 〈S〉, ± two standard deviations obtained for the 250 independent realizations of the signals.
All simulations are independent across different q and l values. The leftmost and rightmost distributions correspond to the noise-only (q = 0)
and noise-free (q → ∞) case, respectively. The vertical red lines mark the minimal q value for which the distributions’ mean values pass the
midpoint between the mean values obtained for q = 0 and q → ∞. Black dots indicate those q for which the distributions significantly differ
from the ones obtained for q = 0 (Wilcoxon rank-sum test rejected with p < 10−4). Green (light gray) dots indicate those q for which the
distributions significantly differ from the ones obtained for next lower q value (Wilcoxon rank-sum test rejected with p < 10−4).
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FIG. 3. (Color online) Results for the noisy Lorenz signals and corresponding surrogates in dependence on the signal-noise-ratio q and
the amplitude distribution parameter l. Black: Distributions of E and S obtained for 250 independent realizations of the noisy Lorenz signals
(already shown in Fig. 2). Green (light gray): distributions of E and S obtained for 250 surrogates. Here one surrogate was generated for each
of the 250 independent noisy Lorenz signals. Error bars again correspond to the means ± 2 standard deviations. In contrast to Fig. 2, black dots
now indicate those q for which the distribution obtained for the original signals significantly differ from the one obtained for the surrogates
(Wilcoxon rank-sum test rejected with p < 10−4).

caused by the increased proportion of the deterministic Lorenz
signal. Towards high q and the noise-free case (q → ∞),
both measures level off. However, they do not reach values
expected for completely predictable signals, which are 〈E〉 = 0
and 〈S〉 = 1. This is due to the finite length and complex,
nonperiodic nature of the Lorenz signals.

Between the two limits q = 0 and q → ∞, we can assess
the sensitivity of our measures in different ways. At first we
ask how much signal the measures need to detect it from the
noise. We can answer this question by determining the minimal
signal-to-noise ratio q at which the measures’ distribution
significantly differ from their distributions at the noise-only
limit (q = 0) (see black dots in Fig. 2). Furthermore, we
compare the ranges of the signal-to-noise ratio for which
a gradual increase of the signal-to-noise ratio results in a
significant decrease of E and significant increase of S [see
green (light gray) dots in Fig. 2]. Finally, we determine the q

value for which 〈E〉 and 〈S〉 reach the midpoint between the
results obtained for q = 0 and q → ∞ (see red vertical lines
in Fig. 2).

We see that for normally distributed noise (l = 1) the
sensitivity of E and S is almost identical. For increasing l, the
performance of both measures increases. This improvement
is more pronounced for S, so for l = 5 its performance is
clearly higher than the one of E . At this l, S detects the
nonrandom structures at signal-to-noise ratios q that are more
than two orders of magnitude smaller than the ones required
by E . Furthermore, the variability of E across independent
signal realizations is increased at high l and low q. These
effects can be explained in the following way. For higher l,
the proportion of very small noise values is higher (Fig. 1).
Therefore, the overall impact of the noise is smaller. On
the other hand, for higher l the noise has some very high

values. If these high amplitudes contribute in Eq. (3), either
as erroneously predicted or erroneously predicting values, E
is increased substantially towards its limit for unpredictable
signals. For S, in contrast, the nuisance caused by these high
values is limited since ranks are used instead of amplitudes.
Ri0 in Eq. (5) has an upper bound for erroneous predictions,
namely the mean of the k highest ranks. In consequence,
the cost of a wrong prediction is limited for the rank-based
nonlinear predictability score S. Therefore, it outperforms the
amplitude-based nonlinear prediction error E for noise, having
a narrower peak and heavier tails than the normal distribution.

We now contrast the results obtained for the original
noisy Lorenz signals with those for surrogates (Fig. 3).
In dependence on the signal-to-noise ratio q, the surrogate
results have the same characteristics as the original results,
an inverse S-shaped curve for E and an S-shaped curve
for S. At the noise-only limit (q = 0) and very small q

values, the results for the original noisy Lorenz signals are
statistically indistinguishable from those for the surrogates.
Both for the original signals and surrogates results coincide
with those expected for unpredictable signals, 〈E〉 and 〈S〉
are statistically consistent with 1.096 and 0, respectively. On
increasing q, 〈E〉 decreases and 〈S〉 increases, not only for the
original signals but also for the surrogates. For the latter this
reflects the increased predictability caused by the increased
autocorrelation of the noisy signal. Recall that the surrogates
have the same autocorrelation as the original signals and
take into account that the autocorrelation strength increases
for a decreased proportion of the white, i.e., temporally
uncorrelated, noise.

Towards high q and the noise-free case (q → ∞) the
surrogate results also level off. However, they converge to
mean values that are clearly distinct from those of the original
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FIG. 4. (Color online) Comparison of E and S values for focal
and nonfocal EEG signals. Histograms across the 3750 focal (black)
and 3750 nonfocal [green (light gray)] EEG signals. The bin size is
0.015.

signals. This is due to the stochastic nature of the surrogates
and the power of the measures to distinguish them from
the original deterministic signals. The minimal q value at
which the original distributions significantly differ from the
corresponding surrogate distributions vary across l and for E
versus S. In Fig. 3 we compare the distributions obtained for
the 250 independent realizations of the original signals versus
distributions of 250 corresponding individual surrogates. We
observe that the power of the surrogate statistical test increases
with increasing l. Again this improvement is substantially
higher for the rank-based nonlinear predictability score S as
compared to the amplitude-based nonlinear prediction error E .
We get analogous results (not shown) when we determine the
fraction of the 250 independent signal realizations for which
the null hypothesis test was rejected based on a set of 19
surrogates generated for each individual signal realization.
In consequence, the nonlinear predictability score S again
outperforms the nonlinear prediction error E for high l. Here
this is evidenced by a higher statistical power in a surrogate test
of the null hypothesis of a correlated linear stochastic signal.

B. EEG signals

We now consider the distributions of E and S obtained
across all 3750 focal and 3750 nonfocal EEG signals (Fig. 4).
For both measures the focal and nonfocal distributions are
clearly distinct. Recall that higher predictability is reflected in
lower E and higher S values. Accordingly, for both E and S,
the focal EEG signals are on average more predictable than
the nonfocal EEG signals. To quantify this contrast between
focal and nonfocal signals we determine the probability p

that a random sample from the focal EEG signals appears
more predictable than a random sample from the nonfocal
EEG signals. This is done by evaluating the distributions of
S and E numerically for both measures separately, and we
get p = 0.728 for S and p = 0.696 for E . Similarly, this
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FIG. 5. Comparison of rejection fractions ρ of the surrogate
null hypothesis test obtained by E and S for focal and nonfocal
EEG signals. The percentages are with regard to the 3750 focal
and 3750 nonfocal EEG signals. The dashed line indicates the
chance level. The error bars illustrate 95% confidence intervals de-
termined by [ρ − 1.96

√
ρ(1 − ρ)/3750,ρ + 1.96

√
ρ(1 − ρ)/3750],

see Ref. [29]. (Note that the E results are a reproduction of the
corresponding nonrandomness test results shown as part of Fig. 2(a)of
Ref. [29]. There are slight differences, smaller than the confidence
intervals, between the rejection percentages depicted here and those
of Ref. [29]. They are caused by the random component of statistical
type-I errors of the surrogate test across all signals.)

contrast can be assessed using the Z values of a Wilcoxon
rank-sum test, which give Z = 34.1 for S and Z = 29.3 for E .
If results for the focal and nonfocal signals were statistically
indistinguishable, we would obtain approximately p = 0.5
and Z = 0. Hence, the nonlinear predictability score S yields
a higher discriminative power between the focal and nonfocal
EEG signals than the nonlinear prediction error E .

These differences in predictability can indicate that the focal
EEG has a higher degree of nonlinear deterministic structure
than the nonfocal EEG. However, as indicated above, an
alternative or complementary explanation is that the focal EEG
has stronger autocorrelation. We again address this ambiguity
by a surrogate null hypothesis test. For each of the 7500 EEG
signals we generated 19 surrogates. For E , we rejected the null
hypothesis if the result of the original EEG signal was lower,
i.e., the original signal was more predictable, than the ones of
all 19 surrogates. Analogously, for S the original result had
to be above the ones of all 19 surrogates to reject the null
hypothesis. Since we use 19 surrogates, this test has a chance
level of 0.05 for individual EEG signals.

We denote the rejection fractions for the focal and nonfocal
EEG signals for E by ρE,f and ρE,n, respectively, and
for S by ρS,f and ρS,n, respectively. Figure 5 shows that
all four rejection fractions exceed the chance level clearly.
Importantly, we get substantially more rejections for S. In
addition, for both measures more rejections are found for
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the focal EEG signals as compared to the nonfocal signals.
This contrast is higher for S: ρS,f − ρS,n = 0.198 versus
ρE,f − ρE,n = 0.085. Hence, for the nonlinear predictability
score S, the rejection percentage of the null hypothesis of
linear correlated signals is overall higher than for the nonlinear
prediction error E . Furthermore, also with regard to these
rejection percentages, the contrast between the focal and
nonfocal signal is higher for S than for E .

C. Parameter dependence

As reasoned in Sec. II G, we here used the same values
for the parameters as in the main analysis of Ref. [29]. We
furthermore explored the parameter range used in Appendix A
of Ref. [29] (m = [2,4,6,8,10,12], τ = [1,2,4,8] sampling
times, k = [1,5,10], h = [1,2,4,8,16,32] sampling times).
For the sake of conciseness we do not show these results
here. We report however, that all conclusions given here with
regard to the advantage of S over E hold true across this
range of parameters for both the noisy Lorenz signals as
well as for the EEG signals. Furthermore, since we continue
to provide all EEG signals and source codes in the public
domain, the scientific community can readily compare E
and S for whatever set of parameters it might consider
optimal.

IV. DISCUSSION

We compared the sensitivity of the amplitude-based nonlin-
ear prediction error E and the rank-based nonlinear predictabil-
ity score S for deterministic structure in time series. In the
first part, we worked under controlled conditions by analyzing
signals from the Lorenz dynamics superimposed with different
types of noise. We determined the minimal signal-to-noise
ratio q at which the noisy signal can be distinguished from
the noise-only case (q → ∞) and furthermore compared how
quickly the measures rise with further increasing q. For
Gaussian white noise the sensitivity of both measures is almost
identical. However, the nonlinear predictability scoreS is more
robust against noise with a narrower peak and heavier tail
than the normal distribution. We then compared the statistical
power which the measures yield when used as test statistics
in a surrogate test of the null hypothesis that the signal was
measured from a correlated linear stochastic process. Again
the nonlinear predictability score S outperforms the nonlinear
prediction error E for noise with narrow peaks and heavy tails.

One might object that this particular type of noise is
somewhat ad hoc to stress the advantages of S over E .
However, we provide an application to real-world signals for
which our results are in close analogy to the ones obtained
under controlled conditions for model signals. As real-world
signals we used the Bern-Barcelona EEG database. This EEG
database was composed and published before we carried out
the analysis for the present study. Accordingly, any sampling
bias towards favoring the advantage of S over E by the
selection of individual EEG signals can be ruled out.

For the analysis of the EEG signals we again use a two-step
evaluation procedure. We at first consider the measures’ values
as such without the use of surrogates. We then use the measures
as test statistics in the surrogate null hypothesis test. As

for the first step, we observe that the focal EEG signals
are on average deemed by both measures more predictable
than the nonfocal signals. With regard to this feature, the
nonlinear predictability score S yields a higher discriminative
power between the focal and nonfocal EEG signals. The main
difference in the measures’ sensitivity in application to the
EEG signals, however, becomes evident in the surrogate test.
The nonlinear predictability score S has a substantially higher
rejection percentage than the nonlinear prediction error E .
Importantly, for both measures more rejections are found for
the focal EEG signals as compared to the nonfocal signals.
Finally, also with regard to these rejection percentages, the
contrast between the focal and nonfocal signal is higher for S
than for E .

The fact that in a study of seizure-free EEG recordings
we obtain more rejections of the surrogate null hypothesis
for focal EEG signals as compared to nonfocal EEG signals
is consistent with previous studies [17,25,26,29,32–39]. An
important confounding variable in such results derived from
surrogate tests is nonstationarity. Since stationarity is included
in the surrogate null hypothesis, nonstationarity can cause
a rejection of the surrogate test. To address this ambiguity,
we included a stationarity test in our previous work [29].
A main result was that we found stronger indications of
nonstationarity for nonfocal signals as compared to the focal
signals. Furthermore, the contrast between the focal and
nonfocal signals obtained from the E-based randomness test of
Ref. [29] was further enhanced when applied only to stationary
EEG signals. The fact that the present study and our previous
work are based on the same database of EEG signals allows us
to link the S results obtained here to those of the stationarity
test included in our previous work. We do not include detailed
results here but report that all conclusions drawn in Ref. [29]
with regard to the effect of nonstationarity on the E-based
surrogate test hold for the S-based surrogate test as well. In
particular, we find that the contrast between the focal and
nonfocal signals is enhanced when applied only to stationary
EEG signals.

In summary, we have shown under controlled conditions
that the rank-based nonlinear predictability scoreS is of higher
sensitivity to deterministic structure in noisy time series than
the classical amplitude-based nonlinear prediction error E .
In an application to intracranial EEG recordings we have
evidenced that this increased sensitivity for nonrandomness
translates to an improved contrast between focal and nonfocal
EEG signals. Such improvements can be decisive towards
establishing nonlinear signal analysis measures in an auto-
mated quantitative evaluation of the EEG. In addition, from a
clinical point of view it will be important to test if the method
presented here allows one to differentiate focal from nonfocal
EEG signals not only on the group-level but also for individual
patients.
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