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The sudden and apparently unpredictable nature of seizures is one of the most disabling aspects of the disease
epilepsy. A method capable of predicting the occurrence of seizures from the electroencephalogram (EEG) of
epilepsy patients would open new therapeutic possibilities. Since the 1970s investigations on the predictability
of seizures have advanced from preliminary descriptions of seizure precursors to controlled studies applying
prediction algorithms to continuousmulti-day EEG recordings.Whilemost of the studies published in the 1990s
and around the turn of the millennium yielded rather promising results, more recent evaluations could not
reproduce these optimistic findings, thus raising a debate about the validity and reliability of previous investiga-
tions. In this review, we will critically discuss the literature on seizure prediction and address some of the
problems and pitfalls involved in the designing and testing of seizure-prediction algorithms. We will give an
account of the current state of this research field, point towards possible future developments and propose
methodological guidelines for future studies on seizure prediction.
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Introduction
Epilepsy is one of the most common neurological disorders,

second only to stroke, with a prevalence of 0.6–0.8%

of the world’s population (Annegers, 1996). Two-thirds of

the patients achieve sufficient seizure control from anti-

convulsive medication, and another 8–10% could benefit

from resective surgery. For the remaining 25% of patients,

no sufficient treatment is currently available.

For epilepsy patients who do not achieve complete seizure

control, it is the sudden, unforeseen way in which seizures

strike ‘like a bolt from the blue’ that represents one of the

most disabling aspects of the disease. Apart from the risk of

serious injury, there is often an intense feeling of helplessness

that has a strong impact on the everyday life of a patient.

A method capable of predicting the occurrence of seizures

could significantly improve the therapeutic possibilities

(Elger, 2001) and thereby the quality of life for epilepsy

patients.

A question of particular interest is whether apart from

clinical prodromi, which are found only in some patients

(Hughes et al., 1993; Rajna et al., 1997; Schulze-Bonhage

et al., 2006), characteristic features can be extracted from the

continuous EEG that are predictive of an impending seizure.

If it were possible to reliably predict seizure occurrence from

dynamical changes in the EEG of epilepsy patients, fully

automated closed-loop seizure-prevention systems could be

envisioned. Treatment concepts could move from preventive

strategies (e.g. long-term medication with anti-epileptic

drugs) towards an EEG-triggered on-demand therapy

[e.g. by excretion of fast-acting anticonvulsant substances

(e.g. Stein et al., 2000) or by electrical or other stimulation

in an attempt to reset brain dynamics to a state that will no

longer develop into a seizure (e.g. Theodore and Fisher,

2004; Morrell, 2006)].

In principle, there are two different scenarios of how a

seizure could evolve (Lopes da Silva et al., 2003). It could

be caused by a sudden and abrupt transition, in which case

it would not be preceded by detectable dynamical changes

in the EEG. Such a scenario would be conceivable for

the initiation of seizures in primary generalized epilepsy.

Alternatively, this transition could be a gradual change
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(or a cascade of changes) in dynamics, which could in theory

be detected. This type of transition could be more likely in

focal epilepsies.

Clinical findings in support of the existence of a pre-

seizure state include an increase in cerebral blood flow

(Weinand et al., 1997; Baumgartner et al., 1998), oxygen

availability (Adelson et al., 1999) and blood oxygen-level-

dependent signal (Federico et al., 2005) as well as changes in

heart rate (Delamont et al., 1999; Novak et al., 1999; Kerem

and Geva, 2005) before seizure occurrence.

On the level of neuronal networks, focal seizures are

assumed to be initiated by abnormally discharging neurons,

so-called bursters (Yaari and Beck, 2002 and references

therein) that recruit and entrain neighbouring neurons

into a critical mass. This build-up might be mediated by

an increasing synchronization of neuronal activity that is

accompanied by a loss of inhibition, or by processes that

facilitate seizures by lowering the threshold for excitation or

synchronization. In this context, the term ‘critical mass’

might be misleading in the sense that it implies an increasing

number of neurons that are entrained into an abnormal

firing pattern. This mass phenomenon would be easily

accessible to conventional EEG analysis, which, to date, has

failed to detect it. Rather, the seizure-initiating process

might better be visualized as a process by which an

increasing number of critical interactions between neurons

in a focal region and connected units in an abnormal

functional network unfold over time.

On the basis of these concepts, a number of studies have

been carried out aiming to characterize this collective

neuronal behaviour from the gross EEG in order to allow

definition of a transitional pre-ictal phase. In this review,

we will give an overview of the literature on this topic and

the current state of this rather young research field as well

as critically discuss some of the methodological problems

and pitfalls involved in the design and testing of seizure-

prediction algorithms.

The history of seizure prediction
For a better understanding of the practical problems in

this field, we have categorized previous studies on seizure

prediction according to methodological standards. A

chronological overview of studies on seizure prediction

from the past 10 years along with relevant characteristics

(type of epilepsy and EEG, type of EEG analysis, number of

patients and seizures, amount of data analysed, etc.) is given

in Table 1. Detailed mathematical descriptions of the most

common characterizing measures used in EEG analysis can

be found in Appendix C (Supplementary online material).

Early approaches
After some early work on the predictability of seizures dating

back to the 1970s (Viglione and Walsh, 1975), attempts to

extract seizure precursors from surface EEG recordings of

absence seizures were carried out by different groups using

linear approaches. Using autoregressive modelling,

Rogowski et al. (1981) and Salant et al. (1998) reported

pre-ictal changes in the modelled parameters within up

to 6 s before seizure onset. Siegel et al. (1982) found

characteristic changes between the 1-min epochs directly

preceding a seizure and control epochs for individual

patients. Remarkably, in this early study, the authors already

assessed the statistical confidence of their findings and

discussed the influence of different vigilance states.

A further group of studies examined the predictive value

of spike occurrence rates in the EEG. While an early study

reported a decreased focal spiking rate along with an

increased rate of bilateral spikes before seizures (Lange et al.,

1983), other studies carried out on more extended data-

bases showed no systematic changes in spike rates before

seizures (Gotman and Marciani, 1985; Gotman and Koffler,

1989; Katz et al., 1991).

Pre-ictal phenomena
With the advent of the physical–mathematical theory of

non-linear systems in the 1980s, novel approaches were

introduced that were aimed at a better characterization

of dynamical systems exhibiting complex behaviour than

hitherto possible with conventional linear approaches. Soon

time series analysts became aware of seizure prediction as a

potential field of application. In the early 1990s, Iasemidis

et al. (1990) estimated the largest Lyapunov exponent as an

indicator for chaotic behaviour from the intracranial EEG of

epilepsy patients by means of a moving window analysis

and reported a decrease in chaoticity in the minutes before

an epileptic seizure. Some years later, a French group of

researchers reported a pre-ictal decrease in spatiotemporal

complexity as measured by the correlation density before

seizures in a larger group of patients (Martinerie et al.,

1998). The same group developed another measure named

the dynamical similarity index, which quantified changes in

dynamics relative to a constant reference window at the

beginning of a pre-ictal recording. They found a decreased

dynamical similarity before seizures in both intracranial

(Le Van Quyen et al., 1999, 2000) and scalp EEG recordings

(Le Van Quyen et al., 2001a).

However, what was common for all of these studies is that

their focus of interest was entirely limited to the pre-ictal

period and that they did not include an evaluation of inter-

ictal control recordings (i.e. periods from the seizure-free

interval other than the presumed pre-ictal period). By thus

neglecting the issue of specificity, these studies rendered

an incomplete evaluation of the investigated measures’

suitability for seizure prediction.

Proof-of-principle studies
Another group of studies tackled the issue of specificity

by comparing pre-ictal changes in dynamics to inter-ictal

control recordings, although the findings reported in these

studies remained on an exemplary level. Navarro et al. (2002)
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used selected examples of five of their patients to show that

drops in their similarity measure occurred more frequently

before seizures than during the inter-ictal EEG. Mormann

et al. (2000) reported changes in phase synchronization

between different brain areas before seizures that were not

found in exemplary seizure-free recordings. In two reviews

of their own work, Le Van Quyen et al. (2001b, 2003)

referred to a submitted study including eight patients with

neocortical epilepsy that seemed to confirm these findings.

In 2003, Chavez et al. published exemplary results using

phase synchronization analysis after band-pass filtering of

the EEG and reported pre-ictal changes in synchronization

to occur predominantly in the beta band.

Controlled studies on predictability
In the first controlled studies comprising defined groups of

patients with pre-ictal and inter-ictal control recordings,

measures like the correlation dimension (Elger and Lehnertz,

1998; Lehnertz and Elger, 1998) (as a measure for dynamical

complexity), dynamical entrainment (Iasemidis et al., 2001)

(defined by the authors as the convergence of largest

Lyapunov exponents in certain selected channels), accumu-

lated signal energy (Litt et al., 2001; Gigola et al., 2004),

simulated neuronal cell models (Schindler et al., 2002) or

phase synchronization (Mormann et al., 2003a, b) were shown

to be suitable for distinguishing inter-ictal from pre-ictal data.

The rise of scepticism
Starting in 2003, a number of studies were published (most

of them carried out on extensive databases) that found a

substantially poorer predictive performance than presum-

able from earlier optimistic reports. Studies by De Clercq

et al. (2003) and Winterhalder et al. (2003) challenged the

reliability of the optimistic results reported for the similarity

index (Le Van Quyen et al., 2001a). The ability of the

correlation dimension for seizure prediction (Lehnertz and

Elger, 1998) was questioned by other studies using this

measure (Aschenbrenner-Scheibe et al., 2003; Harrison et al.,

2005b). Similarly, the promising performance of the

accumulated energy (Litt et al., 2001) could not be

reproduced in later studies (Maiwald et al., 2004, Harrison

et al., 2005a). Studies by Lai et al. (2003, 2004) raised doubts

about the suitability of the Lyapunov exponent (Iasemidis

et al., 1990) for seizure prediction.

The advantage of nonlinear measures such as the

correlation density (Martinerie et al., 1998) was questioned

by McSharry et al. (2003). The authors re-evaluated the data

from this study and showed that this measure merely

reflected the variance of the EEG signals. They pointed out

that the presence of non-linearity in a signal does not in

itself justify the use of non-linear, complicated measures to

characterize dynamical changes and emphasized the impor-

tance of showing that these complicated methods indeed

outperform simpler linear measures in order to justify their

use (see also Andrzejak et al., 2006).

Taken together, these studies indicated that earlier

optimistic findings obtained by applying highly optimized

algorithms to small, selected data sets could not be

reproduced on unselected, more extended EEG recordings

that are more closely related to the real-life challenge of

predicting seizures prospectively from the continuous EEG.

Continuous multi-day recordings
Around the turn of the millennium, when mass storage

capacity became more widely available, epilepsy centres were

able to store the complete data acquired during pre-surgical

monitoring without the necessity of selecting sample

recordings. In 2005, different groups published a series of

studies that were carried out on a set of five continuous

multi-day recordings provided by different epilepsy centres

for the First International Collaborative Workshop on

Seizure Prediction (Lehnertz and Litt, 2005) held in Bonn in

April 2002. The aim of this workshop was to have different

groups test and compare their methods on a joint data set.

Results from the different groups for the most part showed a

poor performance of univariate measures (D’Alessandro

et al., 2005; Esteller et al., 2005; Harrison et al., 2005a; Jouny

et al., 2005; Mormann et al., 2005). A better performance

was reported for bi- and multi-variate measures (Iasemidis

et al., 2005; Le Van Quyen et al., 2005; Mormann et al.,

2005), although the observed pre-ictal changes were found

to be locally restricted to specific channels rather than

occurring as a global phenomenon. One of these studies

(Mormann et al., 2005) contained an extensive comparison

of the predictive performance of a number of univariate and

bivariate measures, comprising both linear and non-linear

approaches, using the concept of seizure times surrogates

(Andrzejak et al., 2003; see Appendix B) to assess the

statistical significance of the results obtained. For this con-

cept, the seizure-onset times of the original EEG recordings

are replaced by artificial seizure-onset times that are

generated by randomly shuffling the original onset times. If

a measure’s predictive performance for the original seizure-

onset times is higher than that for a number of realizations

of the surrogate onset times, then the performance of

this measure can be considered significantly better than a

random prediction. In their comparison, the authors found

a significant predictive performance for measures of syn-

chronization, whereas univariate measures, including the

correlation dimension, the Lyapunov exponent and the signal

energy, were not able to discriminate the pre-ictal from the

inter-ictal period above chance level. Non-linear measures

were not found to exhibit a higher predictive performance

than linear measures.

Prospective studies
The first attempts for testing seizure-prediction algorithms in

a prospective manner were carried out by Iasemidis et al.

(2003) and D’Alessandro et al. (2005). The sensitivity and

specificity rates obtained, however, were unacceptable for
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Table 1 Studies on seizure prediction and their relevant characteristics (see text)

Authors Year Type of

epilepsy

Type

of EEG

Characterizing

measure

Patients Seizures Total

EEG (h)

Inter-ictal

controls (h)

Authors

Lehnertz and Elger 1998 MTLE iEEG Correlation dimension 16 16 21 16.9 Lehnertz an

Martinerie et al. 1998 MTLE iEEG Correlation density 11 19 13 0 Martinerie

Le Van Quyen et al. 1999 MTLE iEEG Similarity index 13 23 15 0 Le Van Quy

Le Van Quyen et al. 2000 MTLE iEEG Similarity index 9 17 11 0 Le Van Quy

Mormann et al. 2000 MTLE iEEG Phase synchronization 2 3 4 1.8 Mormann e

Cerf et al. 2000 Focal iEEG Lerner density 7 9 n.s. 1.8 Cerf et al.

Hively et al. 2000 Focal sEEG Dissimilarity measures n.s. 20 40 0 Hively et al

Le Van Quyen et al. 2001a TLE sEEG Similarity index 23 26 26–35 0 Le Van Quy

Iasemidis et al. 2001 TLE iEEG Dynamical entrainment 5 58 266 53.9 Iasemidis et

Litt et al. 2001 MTLE iEEG Accumulated energy 5 30 >312 50 Litt et al.

Le Van Quyen et al. 2001b Neocortical iEEG Phase synchronization 8 n.s. n.s. n.s. Le Van Quy

Lehnertz et al. 2001 Focal iEEG Correlation dimension 59 95 >145 >115 Lehnertz et

Protopopescu et al. 2001 Focal sEEG Dissimilarity measure 41 46 261 73.9 Protopopes

Jerger et al. 2001 Children iEEG Seven different measures 4 12 1 0 Jerger et al.

Navarro et al. 2002 Neocortical s+iEEG Similarity index 11 41 53–142 12–60c Navarro et

Schindler et al. 2002 Focal sEEG + FO Simulated neuronal cells 7 15 144 n.s. Schindler et

Mormann et al. 2003a MTLE iEEG Synchronization/correlation 10 14 31 15 Mormann e

Mormann et al. 2003b Focal iEEG Phase synchronization 18 32 117 49 Mormann e

De Clercq et al. 2003 MTLE sEEG Similarity index 12 n.s. n.s. 0 De Clercq

Niederhauser et al. 2003 Focal iEEG Sign periodogram transf. 5a 31 336 335 Niederhaus

Chávez et al. 2003 Neocortical iEEG Phase synchronization 2 6 22 9 Chávez et a

Hively and

Protopopescu

2003 Focal sEEG Dissimilarity measure 41 46 261 73.9 Hively and

Protopopes

D’Alessandro et al. 2003 MTLE iEEG Feature selection 4 46 n.s. 160 D’Alessand

Iasemidis et al. 2003 TLE iEEG Dynamical entrainment 5 28b 214 n.s. Iasemidis et

Winterhalder et al. 2003 Focal iEEG Similarity index 21 88 588 509 Winterhald

Aschenbrenner et al. 2003 Focal iEEG Correlation dimension 21 88 588 509 Aschenbren

Van Drongelen et al. 2003 Children s+iEEG Kolmogorov entropy 5 5 5 0 Van Drong

Li et al. 2003 MTLE sEEG Marginal predictability 8 24 37 13.3 Li et al.

Drury et al. 2003 MTLE sEEG Marginal predictability 14 44 59 14.7 Drury et al

Maiwald et al. 2004 Focal iEEG Accumulated energy 21 88 588 509 Maiwald et

Gigola et al. 2004 Focal iEEG Accumulated energy 4 13 26 10.5 Gigola et al

D’Alessandro et al. 2005 MTLE iEEG Feature selection 2 19b 177 140 D’Alessand

Esteller et al. 2005 MTLE iEEG Accumulated energy 4 42 294 >168 Esteller et a

Harrison et al. 2005a MTLE iEEG Accumulated energy 5 51 311 <92 Harrison et

Iasemidis et al. 2005 MTLE iEEG Dynamical entrainment 2 11b 41 >8 Iasemidis et

Jouny et al. 2005 MTLE iEEG Complexity/synchrony 2 25 177 n.s. Jouny et al.

Le Van Quyen et al. 2005 MTLE iEEG Phase synchronization 5 52 305 25–120 Le Van Quy

Mormann et al. 2005 MTLE iEEG 30 different measures 5 51 311 >107 Mormann e

Kalitzin et al. 2005 TLE iEEG Phase clustering 3 20 >75 n.s. Kalitzin et a

Navarro et al. 2005 Focal iEEG Similarity index 13 129 227 0 Navarro et

Chaovalitwongse et al. 2005 TLE iEEG Dynamical entrainment 10 64b 597 >404 Chaovalitw

Harrison et al. 2005b Focal iEEG Correlation dimension 20 960 2347 n.s. Harrison et

Schelter et al. 2006 MTLE iEEG Phase synchronization 4 20 112 96 Schelter et

Adapted f
lobe lobe epilep

aSelected
bResults li
cOnly from
dAlgorithm
eVarious p
fUncorrec
gSeparate
hSeparate
iInconclus
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r-ictal

trols (h)

Authors Year Type of

analysis

In-sample

parameter

optimization

Retrospective

best channel

selection

Prospective Assumed

pre-ictal

period

(min)

Sensitivity

(%)

False-positive

rate (FP/h)

Mean

prediction

time (min)

Statistical

validation of

performance

9 Lehnertz and Elger 1998 Statistical Yes Yes No 30 94 0 12 No

Martinerie et al. 1998 Algorithmic No Yes No 20 89 n.a. 3 No

Le Van Quyen et al. 1999 Algorithmic No Yes No 20 83 n.a. 6 No

Le Van Quyen et al. 2000 Algorithmic No Yes No 20 94 n.a. 4 No

Mormann et al. 2000 Proof of principle No Yes No n.s. 100 0 n.s. No

Cerf et al. 2000 Statistical Yes Yes No 60 100 0 n.s. No

Hively et al. 2000 Algorithmic Yes No No 262.5 100 n.a. 52 No

Le Van Quyen et al. 2001a Algorithmic No Yes No 60 96 n.a. 7 No

9 Iasemidis et al. 2001 Statistical Yes Yes No Variable 91 n.s. 49 No

Litt et al. 2001 Statistical Yes No No 180 90 0.12 19 No

Le Van Quyen et al. 2001b n.s. n.s. n.s. No n.s. 77 n.s. Several min No

5 Lehnertz et al. 2001 Algorithmic Yes Yes No n.s. 47 0 19 No

9 Protopopescu et al. 2001 Algorithmic Yes Yes No 60 95 0 n.s. No

Jerger et al. 2001 Algorithmic Yes Yes No 3 100 n.a. 2 No

60c Navarro et al. 2002 Algorithmic No Yes No 90 83 0.31c 8 No

Schindler et al. 2002 Algorithmic Yes No No Variable 100 n.s. 83 No

Mormann et al. 2003a Algorithmic Yes No No 240 86 0 86/102h Yes

Mormann et al. 2003b Algorithmic Yes No No 240 81 0 4–221 No

De Clercq et al. 2003 Algorithmic No Yes No 60 0 n.a. – No

Niederhauser et al. 2003 Algorithmic Yes Yes No 2 94 0.08f 5–80 s No

Chávez et al. 2003 Proof of principle Yes Yes No 90 n.s. n.s. >>30 No

9 Hively and

Protopopescu

2003 Algorithmic Yes No No 60 88 0.02 35 No

D’Alessandro et al. 2003 Algorithmic Yes Yes Nod 10 63 0.28 3 No

Iasemidis et al. 2003 Algorithmic No No Yes 180 83 0.17f 100 No

Winterhalder et al. 2003 Algorithmic Yes Yes No 30e 42 0.15 n.s. No

Aschenbrenner et al. 2003 Algorithmic Yes Yes No 50e 34 0.10 n.s. No

Van Drongelen et al. 2003 Algorithmic Yes No No 60 60 n.a. 21 No

Li et al. 2003 Statistical No No No 60 n.s. n.s. n.s. No

7 Drury et al. 2003 Statistical No No No 60 n.s. n.s. 30 No

Maiwald et al. 2004 Algorithmic Yes Yes No 32e 30 0.15 n.s. No

5 Gigola et al. 2004 Statistical Yes n.s. No 70 92 0 n.s. No

D’Alessandro et al. 2005 Algorithmic No No Yes 10 100/13g 1.10/0.71g 2/n.s.g No

8 Esteller et al. 2005 Algorithmic Yes Yes Nod 180e 71 0.11f 85 No

Harrison et al. 2005a Statistical No No No 60 0 – – No

Iasemidis et al. 2005 Algorithmic No No Yes 120 82 0.15f 78 No

Jouny et al. 2005 Statistical No No No 60 0 – – No

120 Le Van Quyen et al. 2005 Algorithmic Yes No Nod Variable 69 n.s 187 No

7 Mormann et al. 2005 Statistical Yes Yes No 5–240e n.s. n.s. – Yes

Kalitzin et al. 2005 Statistical Yes Yes No – n.s. n.s. – No

Navarro et al. 2005 Algorithmic No Yes No 120 64 n.a. >13 No

4 Chaovalitwongse et al. 2005 Algorithmic No No Yes 180 69 0.15f 72 Yesi

Harrison et al. 2005b Statistical Yes No No 90/15e 0 – – No

Schelter et al. 2006 Statistical No Yes No 40e 70 0.15 n.s. Yes

Adapted from Mormann et al. (2006a). n.s.: not specified; n.a.: not analysed; MTLE: medial temporal lobe epilepsy; TLE: temporal
lobe epilepsy; iEEG: intracranial EEG; sEEG: surface EEG; FO: foramen ovale electrodes.
aSelected out of a group of 10 patients.
bResults listed are those obtained for out-of-sample testing data after in-sample optimization on training data.
cOnly from five selected patients.
dAlgorithm designed to run prospectively, but results are reported for training and testing data together.
eVarious predefined prediction horizons were analysed.
fUncorrected false prediction rate including pre-ictal periods.
gSeparate results reported for two different patients.
hSeparate results reported for two different measures.
iInconclusive validation: surrogate seizure times are not treated in the same way as original seizure times.
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clinical implementation. Whether the performance of the

algorithms was at all better than chance was not investigated.

A recent study by Chaovalitwongse et al. (2005) attempted

such a validation based on the method of seizure times

surrogates proposed 2 years earlier by Andrzejak et al. (2003).

However, the authors re-used analysis parameters that were

optimized for the original seizure-onset times in their analysis

of the surrogate onset times, so the results must be regarded as

inconclusive (Mormann et al., 2006b; Chaovalitwongse et al.,

2006; see also Winterhalder et al., 2006).

The current state of the field
During the 1990s and around the turn of the millennium,

a number of studies were highly optimistic about seizure

prediction becoming feasible for clinical application in

the near future. However, the focus of these studies was

limited to analysing short and selected EEG recordings,

and numerous methodological caveats were not addressed

properly. In the past 5 years, many studies have been

published that questioned both the validity and reliability of

these findings by showing that earlier optimistic results

could not be reproduced.

While many early studies reported pre-ictal changes in

channels within or close to the seizure-onset zone (Elger and

Lehnertz, 1998; Lehnertz and Elger, 1998; Martinerie et al.,

1998; Le Van Quyen et al., 1999, 2000), more recent ones

found channels in more remote and, in some cases, even

contralateral areas to carry the relevant information

(D’Alessandro et al., 2003, 2005; Mormann et al., 2003b,

2005; Esteller et al., 2005; Le Van Quyen et al., 2005). This

finding would support the notion of an epileptic network

whose interactions extend over large regions of the brain

rather than the concept of a localized and well-defined

epileptic focus. For the field of seizure prediction to advance

towards clinical applications, it is inevitable that future

studies on seizure prediction place a strong emphasis on

sound methodology and include a rigorous statistical

validation. Some of the methodological issues and caveats

involved in the designing and testing of seizure prediction

algorithms are addressed in Appendix A and B, respectively.

Future perspectives
Prospective out-of-sample algorithms with
statistical validation
The next milestone in the field of seizure prediction is to

prove that seizure-prediction algorithms can be designed to

run prospectively on unselected, out-of-sample data with a

performance that is better than that of a random prediction

process. If such an algorithm requires a training phase in

which some seizures are used to adjust patient–individual

parameters and perform a feature or channel selection,

the requirements on the individual data sets increase since a

larger number of seizures per individual data set will be

needed. Performance results should be reported only for the

testing data.

Before addressing the question as to whether an obtained

performance might be sufficient for clinical application, it

needs to be tested whether a performance is at all better than

chance. To this aim, methods for statistical validation are

inevitable. These methods can be based on Monte Carlo

simulations (Andrzejak et al., 2003, Mormann et al., 2003a,

Kreuz et al., 2004; Jerger et al., 2005; Mormann et al., 2005)

or on comparison with analytical results derived from naı̈ve

(random or periodic) prediction schemes (Winterhalder

et al., 2003; Schelter et al., 2006).

Confounding variables
Another key to the improvement of algorithms could be a

better understanding of the inter-ictal period and all of its

confounding variables that may influence the character-

izing measures used in the algorithms and may thereby

decrease the algorithm’s sensitivity or specificity. Studies on

continuous multi-day recordings have revealed distinct

circadian fluctuations of measures characterizing the EEG

(Kreuz et al., 2004). In particular, different vigilance states

(e.g. slow-wave sleep) seem to have an influence on such

measures (Navarro et al., 2005). A further confounding

influence on characterizing measures has been described for

the blood levels of carbamazepine (Lehnertz and Elger,

1997). To date, little is known about the influence of

different cognitive or emotional states (Lehnertz, 1999).

Once the influence of confounding variables is better

understood, it can be taken into account by an algorithm to

increase its predictive performance.

Mechanisms of ictogenesis
While many studies on seizure prediction focused on

algorithmic prediction, they paid comparably little interest

in the underlying mechanisms of seizure generation. In light

of the rather poor performance of the seizure-prediction

algorithms designed to date, it is questionable whether any

inference from these algorithms to the underlying mechan-

isms of a presumed pre-ictal transition can be regarded

as meaningful. Instead, the mechanisms of ictogenesis

remain largely unknown except for certain distinct types of

epilepsies such as reflex epilepsies (Kalitzin et al., 2002; Parra

et al., 2003). Furthermore, it is conceivable that there may be

different mechanisms underlying the initiation of seizures in

different brain structures (e.g. hippocampus, neocortex),

and thus different seizure-predicting algorithms may be

necessary. This may also be true of different pathologies (e.g.

dysplasias, malformations, post-traumatic lesions, etc.). The

predictive changes in the EEG before a seizure and the best

methods for detecting them could thus vary considerably

from patient to patient.

A number of recent studies have attempted to increase

our understanding of the dynamics of ictogenesis in

humans. In both temporal lobe and neocortical epilepsies,

high-frequency oscillations were found to play a role in the

initiation of epileptiform potentials and seizures (e.g. Bragin
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et al., 1999, 2002; Schiff et al., 2000; Worrell et al., 2004). In

another recent study on patients with temporal lobe

epilepsy, a measure for phase demodulation of intracranial

EEG recorded inter-ictally during intermittent electrical

stimulation was found to yield important clues for possible

dynamical scenarios that lead to seizure onsets (Kalitzin

et al., 2005). In extension to previous studies on seizure

dynamics (e.g. Pijn et al., 1991; Franaszczuk et al., 1994,

1998; Bartolomei et al., 2004; Stam, 2005 and references

therein) Schiff et al. (2005) successfully used canonical

discrimination analysis to search for dynamically distinct

stages of epileptic seizures in humans. A further promising

approach is to model EEG signals to gain insight into

the dynamical processes involved in seizure generation

(Wendling et al., 2002, 2003; Suffczynski et al., 2005, 2006).

A better understanding of the mechanisms of ictogenesis

that takes into consideration the complex spatiotemporal

interactions between different brain regions for different

types of epilepsy may eventually stimulate the design of

improved methods and algorithms.

Closed-loop intervention systems
The ultimate goal in designing a reliable seizure-prediction

algorithm can be seen in a system capable of not only

warning of an impending seizure but actually taking

measures to prevent it from occurring. An ideal intervention

system would be able to abort the development of a seizure

before the onset of clinical symptoms. The tolerance of false

alarms leading to unnecessary interventions would depend

on the side-effects caused by the intervention.

The principal feasibility of different seizure-intervention

strategies such as local application of short-acting, powerful

drugs (Stein et al., 2000), electrical stimulation techniques

(Morrell, 2006 and references therein), local cooling (Hill

et al., 2000) or biofeedback operant conditioning (Sterman,

2000) has been outlined in the literature.

Presently, much research is directed towards the design of

a responsive intervention system using deep brain or cortical

stimulation (Osorio et al., 2001; Theodore and Fisher, 2004;

Morrell, 2006). In its simplest form, such a system could

include a single depth recording electrode, a processing unit,

and then apply stimulation via the recording electrode at a

critical time to alter the local brain state from that of a pre-

ictal or pro-convulsive condition to a more stable, non-

ictogenic state. Such an EEG-based responsive stimulation

system could in principle be based either on prediction

algorithms or on algorithms for early seizure detection

(see Appendix A). At present, prediction algorithms are still

too limited in performance to justify clinical trials with

responsive stimulation based on these approaches. For early

seizure-detection algorithms, the question is whether after

the onset of electrographical seizure activity, the seizure can

indeed be aborted by stimulation or whether the brain has

already passed the ‘point of no return’ and is in a state that

will inevitably progress into a clinical seizure manifestation.

First studies using early seizure-detection algorithms for

responsive brain stimulation have reported promising

results, but these must yet be regarded as preliminary

and allow no definite conclusion (Kossoff et al., 2004;

Fountas et al., 2005; Osorio et al., 2005). In particular, it

remains to be seen whether closed-loop (i.e. responsive)

brain stimulation is indeed superior to open-loop (i.e.

chronic or scheduled) stimulation in terms of efficacy and

tolerability.

For any responsive brain-stimulation system, a crucial

issue is where to place both afferent and efferent electrodes,

that is, electrodes for detection of a pre-seizure state and

stimulation electrodes, respectively. Number and location of

electrodes may be critical to achieve a sufficiently early

detection of an impending seizure and to apply stimulation

locally restricted so that the intervention is not consciously

perceived by the patient.

Conclusion
The more rigorous methodological design in many recent

seizure-prediction studies has shown that many of the

measures previously considered suitable for prediction

perform no better than a random predictor. On the other

hand, evidence has accumulated that certain measures,

particularly measures quantifying relations between record-

ing sites to characterize interaction between different brain

regions, show a promising performance that exceeds the

chance level as evidenced by statistical validation.

The few studies that have used prediction algorithms in a

quasi-prospective manner (i.e. without the use of a posteriori

information) either did not include a statistical validation or

did not apply it correctly.

The design and evaluation of prospective seizure-

prediction algorithms involve numerous caveats that need

to be considered. The current literature allows no definite

conclusion as to whether seizures are predictable by pro-

spective algorithms. To answer this question, future studies

need to rely on sound and strict methodology and include a

rigorous statistical validation.

In order to assure the methodological quality of future

studies on seizure prediction, we propose the following

guidelines:

� Prediction algorithms should be tested on unselected

continuous long-term recordings covering several days of

EEG in order to comprise the full spectrum of physiological

and pathophysiological states for an individual patient.

� Studies should assess both sensitivity and specificity and

should report these quantities with respect to the applied

prediction horizon. Rather than false prediction rates,

the portion of time under false warning should be reported.

If false prediction rates are reported, they should be

reported only for the seizure-free interval.

� Results should be tested using statistical validation methods

based on Monte Carlo simulations or naı̈ve prediction
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schemes to prove that a given prediction algorithm

performs indeed above chance level. This is particularly

important for studies that contain in-sample optimization

such as retrospective adjustment of parameters or selection

of EEG channels.

� If prediction algorithms are optimized using training

data (in-sample), they should be tested on independent

testing data (out-of-sample). If part of the data from an

individual patient are used for patient-specific parameter

adjustment or EEG channel selection, these data must be

excluded when evaluating the performance out-of-sample.

Performance of an algorithm should always be reported

separately for the testing data.

The next logical step in the field of seizure prediction will

be to test on long-term recordings whether any of the

prediction algorithms devised to date are able to perform

better than a random prediction in a quasi-prospective

setting on out-of-sample data. This step is an indispensable

prerequisite for justifying prospective clinical trials involving

invasive seizure-intervention techniques such as electrical

brain stimulation in patients based on seizure prediction.

Supplementary Material
Supplementary data are available at Brain online.
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Appendix A: Conceptual issues
This appendix addresses issues that need to be resolved

before designing a study on seizure prediction.

Prediction, forecasting or anticipation?
In the strict sense of the words predicting or forecasting an

event means the ability to determine in advance the time

of its occurrence with a certain precision. The term

anticipation implies more of an uncertainty as to when

exactly an event will occur. This latter concept better fits the

design of seizure-prediction algorithms, which usually assume

a seizure to occur within a certain time period after an alarm is

issued without knowing its exact onset time. As in the majority

of publications in this field, however, we will use the three

different terms interchangeably.

The events to be predicted: clinical or
electrographical seizures?
An important issue is the selection of the ictal events that are

to be anticipated by an algorithm. While the benchmark for

clinical application would clearly be the forecasting of

clinical seizure events, subclinical seizures today are mostly

regarded not as a different entity, but rather as a milder

variant of the same dynamical event that constitutes a

clinical seizure. It is therefore arguable whether it is

reasonable to exclude subclinical ictal events in a prediction

algorithm. Nevertheless, most studies so far have restricted

themselves to the analysis of clinical seizures.

Similarly, the onset time of a seizure can be determined

either from the first clinical signs or from the first visible

EEG changes. Since there is often some uncertainty in the

assessment of clinical symptoms, particularly in complex

partial and absence seizures, it is reasonable to determine the

seizure onset electrographically, especially if intracranial

recordings from the seizure-onset zone are available.

Seizure prediction versus early seizure
detection

Algorithms that aim at an early detection of the electro-

graphical seizure onset, which may occur several seconds

before the first clinical symptoms, should not be regarded as

seizure-prediction algorithms, but rather as early seizure-

detection algorithms (e.g. Osorio et al., 1998). In contrast to

seizure prediction, which aims at the identification of a pre-

ictal state sufficiently long before the electrographical seizure

onset, early seizure detection does not provide an extensive

time for intervention if any at all. Early seizure detection

alone, without an intervention to immediately abort a

seizure, may provide little clinical benefit to a patient, aside

from alerting the patient that a seizure is imminent.

If implemented within a closed-loop intervention system

(see Future perspectives) endowed with sufficient seizure-

abatement strategies, however, early detection algorithms may

prove useful as a basis for responsive intervention, provided

the epileptic brain is not yet beyond a ‘point of no return’ from

which it will inevitably evolve into a clinical seizure.

The type of EEG: intracranial or
surface recordings?
While the majority of seizure-prediction studies to date have

been carried out on intracranial recordings, there are some
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studies that analysed surface recordings (Table 1). Intracra-

nial recordings bear the advantage of a higher signal-to-

noise ratio and a better spatial resolution, and the data

can be considered mostly artefact-free. They also bear the

potential advantage of allowing one to record directly from

the seizure-generating region. On the other hand, surface

recordings are less invasive and could, in principle, be used

in an ambulatory setting to monitor a patient’s seizure

situation in his/her usual environment. This would,

however, require a high degree of compliance on the part

of a patient owing to the inconvenience of constantly

wearing an EEG cap.

Furthermore, if seizure-anticipation algorithms proved to

be successful, they would most likely be implemented in an

implantable, closed-loop warning or intervention system. The

technical feasibility of intracranial intervention systems has

already been proven by responsive brain-stimulation devices

that are currently being tested in clinical trials for their ability

to reduce seizure frequency (cf. Morrell, 2006). Many groups

in the field therefore regard the usefulness of scalp EEG

recordings for studies on seizure prediction as rather limited

compared with intracranial recordings.

Data requirements
While it is on the one hand desirable to use data sets for

analysis that contain a large number of seizures, it is also

desirable to have a sufficient time interval between consecu-

tive seizures, so that they can be regarded as independent

events. If seizures are too closely spaced (clustered seizures)

it becomes difficult to separate the post-ictal period from a

presumed pre-ictal state (cf. Jouny et al., 2005) as the exact

duration of either of the two is unknown. It may be noted in

this context that the average seizure frequency in a moni-

toring unit of up to three events per day (Haut et al., 2002)

is �30 times higher than the mean seizure frequency of

three per month under normal circumstances (Bauer and

Burr, 2001). If a certain false prediction rate in the epilepsy

monitoring unit corresponds to a situation where every

other alarm is a false alarm (positive predictive value of

50%), then the same false prediction rate under normal

circumstances would mean that only 1 out of 60 alarms

is a correct warning (positive predictive value of 1.7%)

(cf. Winterhalder et al., 2003).

EEG recordings used for studies on seizure prediction

should ideally comprise EEG data recorded continuously

over several days. Recording gaps due to diagnostic

procedures during the pre-surgical work-up (e.g. structural

MRI to verify electrode placement) are usually unavoidable

and are not considered a major drawback. Since during the

pre-surgical monitoring, patients are constantly undergoing

changes that could have a confounding influence on char-

acterizing measures of the EEG (e.g. tapering of medication),

it is advisable to use all inter-ictal control data available since

a restriction (e.g. the first 24 h of an EEG) could introduce

a confounding bias.

Appendix B: Assessing the performance of
a prediction algorithm
In order to compare the relative merit of the different studies

on seizure prediction published to date, it is necessary

to realize how the performance of a seizure-prediction

technique is assessed. In this appendix we will therefore

discuss some of the problems and pitfalls involved in the

evaluation of an algorithm for seizure prediction.

Moving window analysis
Most of the prediction techniques published up to now use a

so-called moving window analysis in which some (linear or

non-linear) characterizing measure is calculated from a

window of EEG data with a pre-defined length, then the

subsequent window of EEG is analysed, and so forth. The

duration of these analysis windows usually ranges between

10 and 40 s. Depending on whether the employed measure is

used to characterize a single EEG channel or relations

between two or more channels, it is referred to as a

univariate, bivariate or multivariate measure, respectively.

The moving window analysis thus renders time profiles of a

characterizing measure for different channels or channel

combinations, respectively.

Statistical versus algorithmic approaches
The analysis design used to evaluate these time profiles in

the following step can be either statistical or algorithmic (cf.

Table 1). A statistical design is retrospective by nature and

compares the amplitude distributions of the characterizing

measures from the inter-ictal with those from the assumed

pre-ictal period in one way or another. The temporal

structure of the time profiles is usually not preserved in this

type of analysis. Such a design can be useful for investigating

and comparing the potential predictive performance of

different characterizing measures under different conditions.

On the other hand, an algorithmic analysis uses a design

that produces a time-resolved output (i.e. an output for every

point of a time profile). With respect to practical application,

the algorithm should ideally be prospective (i.e. its output for

a given time should be a function of the information available

at this time). Prediction algorithms usually employ certain

thresholds. If the time profile of a characterizing measure

crosses the threshold, the algorithm produces an alarm. This

alarm can be either true or false, depending on whether it is

actually followed by a seizure or not. For this distinction, it is

necessary to define a prediction horizon (i.e. the period after

an alarm within which a seizure is expected). If an alarm is

followed by a seizure within the prediction horizon, it

is classified as a true alarm (true positive); otherwise it is

regarded as a false alarm (false positive). In addition, it may

be useful to require a minimum time interval between an

alarm and a seizure occurrence in order to count this alarm

as a successful prediction if the algorithm is to be used for

seizure prevention. This minimum intervention time can

be introduced as an additional constraint. [It may be noted
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that in the literature, different definitions are sometimes used for

these quantities, e.g. one group has used the term ‘seizure

occurrence period’ instead of prediction horizon

and ‘seizure prediction horizon’ instead of minimum inter-

vention time (Aschenbrenner-Scheibe et al., 2003; Winterhalder

et al., 2003; Maiwald et al., 2004)]. In studies that employ

a statistical instead of an algorithmic design, the prediction

horizon corresponds to the assumed pre-ictal period.

Sensitivity and specificity

If a seizure is not preceded by an alarm within the prediction

horizon, this will be counted as a false negative. A less trivial

question is how to quantify true negatives. In principle,

every single window of the moving window analysis that is

outside the duration of the assumed pre-ictal period (i.e. one

prediction horizon before a seizure) and does not produce

an alarm could be counted as a true negative. However, since

sensitivity is usually quantified as the number of seizures

with at least one alarm within the preceding prediction

horizon divided by the total number of seizures, it is

reasonable to define specificity based on the prediction

horizon, too. If, for instance, the prediction horizon is 3 h,

the sensitivity quantifies the fraction of correctly classified

pre-ictal 3-h segments, while the specificity measures the

fraction of correctly classified (consecutive) inter-ictal 3-h

segments.

In order to avoid any ambiguity in statistically quantifying

the specificity of a prediction algorithm, most groups have

instead reported specificity rates measured as false predic-

tions per hour. Unfortunately, even for false prediction rates,

different definitions are found in the literature. Several

groups have determined false prediction rates by counting

all false positives and dividing this number by the total

duration of the analysed recording (Iasemidis et al., 2003;

Niederhauser et al., 2003; Chaovalitwongse et al., 2005;

Esteller et al., 2005; Iasemidis et al., 2005). This definition

ignores the fact that for each seizure contained in the

recording, there is a pre-ictal period (i.e. the prediction

horizon) during which every alarm is counted as a true

prediction, and false predictions cannot occur by definition.

Therefore, other groups have used corrected false prediction

rates that were calculated only for the inter-ictal period

(Aschenbrenner-Scheibe et al., 2003; Mormann et al.,

2003a, b; Winterhalder et al., 2003; Maiwald et al., 2004).

In this context it is important to realize that a reported

false prediction rate cannot be judged independent from

the prediction horizon, since in a prospective prediction

algorithm a false alarm will leave the patient mistakenly

awaiting a seizure for the duration of the prediction horizon.

It is only after this duration that the patient will know if

the alarm was a false warning or not.

As an example from the literature, consider an algorithm

with a 2-h prediction horizon that yields a sensitivity of

9/11 = 82% and an uncorrected false prediction rate of 6/

41 h = 0.15/h (Iasemidis et al., 2005). If we take into account

that the uncorrected false prediction rate includes the pre-

ictal periods during which no false prediction can occur by

definition, the corrected false prediction rate (assuming

that the pre-ictal periods of the different seizures are

non-overlapping) is 6/19 h = 0.32/h, thus, more than twice

as high. Furthermore, if we consider that after each false

prediction, the patient needs to wait for 2 h before

knowing if it was a false prediction, the algorithm of our

example may (assuming that false predictions are not spaced

closer than the prediction horizon) leave a patient spending

6 · 2/19 = 63% of the inter-ictal period waiting for a seizure

that will not occur while still failing to anticipate every

fifth seizure. An algorithm yielding the same results for a

prediction horizon of 10 min would instead leave the patient

in futile expectation of a seizure only in 3% of his/her

seizure-free time. This example shows that a prediction rate

should be judged in view of the prediction horizon used

by the algorithm and that it is the product of these two

quantities that should be compared across studies.

A better way to assess the specificity of a prediction

algorithm would therefore be to report the portion of time

from the inter-ictal period (i.e. the inter-seizure interval

without the pre-ictal period) during which the patient is not

in the state of falsely awaiting a seizure.

In general, any algorithm can be tuned (e.g. by varying

the alarm threshold) to yield a higher sensitivity at the cost

of a lower specificity and vice versa. For a closed-loop

intervention system, the desired relation between these two

quantities will depend on the invasiveness of the inter-

vention technique under consideration. If the intervention

does not impair the patient, a higher false prediction rate

will be tolerated up to the point where even a constant

intervention (such as a chronic or scheduled stimulation

from implantable brain-stimulation devices; cf. Theodore

and Fisher, 2004) is possible and could be performed

without a prediction algorithm.

The problem of in-sample optimization
Another important issue in the evaluation of a prediction

algorithm is the use of a posteriori information. For a pro-

spective prediction algorithm, this type of information is not

available. Two typical cases of using a posteriori information

are found in the literature: (i) in-sample optimization of

parameters of the algorithm; and (ii) a posteriori selection of

one or more channels with optimum performance.

In-sample optimization or training of parameters is

present whenever parameters used for the calculation of

the characterizing measure of the EEG or of the prediction

algorithm itself are adjusted to produce optimal perfor-

mance of the algorithm for a given set of data. Such an

optimization is likely to result in an over-estimated

performance that will not be reproducible when applying

the algorithm to other, out-of-sample testing data that were

not used in the optimization process. In order to assess the

true performance of a prediction algorithm, it is therefore

mandatory to test it on out-of-sample data.
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Another way of using a posteriori information relates

to the selection of channels that are able to discriminate

an inter-ictal from a pre-ictal state. The great majority of

studies have shown that out of the available number of

recording channels, only a limited number carry information

that can actually be used for the detection of a pre-seizure

state, while the remaining channels are likely to increase the

number of false detections without contributing to the

detection sensitivity of an algorithm. The task at hand is to

decide in advance which channels are best suited for the

purpose. Several studies have attempted to tackle the problem

of channel selection by using the first few seizures to select the

appropriate channels and/or parameters for the algorithm

before trying to detect precursors of the seizures that follow

(D’Alessandro et al., 2003, 2005; Esteller et al., 2005; Le Van

Quyen et al., 2005). Such a procedure implies that the

spatiotemporal dynamics preceding a seizure do not change

from seizure to seizure. Iasemidis et al. (2003, 2005) designed

an algorithm using a selection of channels that is readjusted

after every seizure so that it would have been optimal for the

seizure that has just occurred. Such a procedure is based on

the implicit assumption that pre-ictal dynamics change to a

certain degree from seizure to seizure, but the pre-ictal

dynamics of a seizure still depend on the dynamics of the

previous one. If these algorithms reliably proved to be better

than a random prediction, they could, in addition to being

beneficial for patients, provide valuable clues for new theories

on the mechanisms involved in ictogenesis.

The need for statistical validation
If an algorithm is designed to run prospectively, its quasi-

prospective out-of-sample performance can be tested retro-

spectively on continuous long-term recordings that were

not previously used for parameter optimization or channel

selection. Once this quasi-prospective performance (in terms

of correct alarms and false alarms with respect to the given

prediction horizon) has been assessed, it remains to be tested

whether it is indeed superior to naı̈ve prediction schemes

such as periodic or random predictors. For this aim,

researchers designed a framework to assess the performance

of such a random predictor (Winterhalder et al., 2003;

Schelter et al., 2006).

In retrospective statistical studies on predictability,

however, it may be desirable to investigate and compare

the potential predictive performance of different character-

izing measures for various thresholds and parameters. In this

case, the use of a random predictor for statistical validation

would require corrections for multiple testing that can be

difficult to perform since the data used for the different

tests are usually not independent. Here, the concept of

seizure time surrogates as introduced by Andrzejak et al.

(2003) can provide a means for statistical validation. In this

process, artificial seizure-onset times are generated by

randomly shuffling the original inter-seizure intervals.

Using these surrogate seizure-onset times instead of the

original onset times, the EEG data are then subjected to the

same algorithm or prediction statistics that was used for

the original onset times. Only if the performance of the

algorithm for the original seizure times is significantly better

than the performance for a number of independent realizations

of the surrogate seizure times, can the null hypothesis, namely,

that a given algorithm cannot detect a pre-seizure state with a

performance above chance level, be rejected. The advantage of

this type of statistical validation is that it can be applied to any

type of analysis, algorithmic or statistical. A modification of this

surrogate test has recently been proposed on the basis of a

constrained randomization of the time profile of the

characterizing measure (Kreuz et al., 2004).

Appendix C: Characterizing measures
of the EEG
This appendix contains an overview of measures described in

this review that are commonly used to characterize electro-

encephalographic time series including detailed mathematical

descriptions. The described measures are typically calculated

from EEG epochs of �20 s in a moving window analysis (see

Appendix B). Some measures may require pre-processing of

EEG epochs such as demeaning or filtering.

Univariate linear measures
The information contained in consecutive amplitude values of

a signal x(t) that is sampled in the form of a discrete time series

x(ti) = x(t0 + i·Dt) = xi (with i = 1, . . . ,N and Dt denoting the

sampling interval) can also be encoded by amplitudes and

phases of harmonic oscillations with a range of different

frequencies. The map that translates between these representa-

tions in the time domain {xi} and the frequency domain {sk} is

called Fourier transform FT. The periodogram of a real signal

provides an estimate of the power spectrum (cf. Press et al.,

1992) and is given by the square of the amplitudes of the

Fourier transform: {pk} = {jskj2} with k = 1, . . . ,N/2 for any

frequency f ¼ k
N · f s= , where f s ¼ 1

Dt= is the sampling rate.

The total power of the time series is given by

P ¼
PN/2

k¼1 pk ¼
Pf s/2

f¼0 pf . In the following, we assume that

the time series’ mean values were set to zero before analysis.

Statistical moments
Statistical moments characterize the amplitude distribution

of a time series {xi}. The second moment is the variance

s2 ¼ 1
N�1

PN
i¼1 x

2
i , the third moment is the skewness x ¼

1
N

PN
i¼1 ðxis Þ

3
and the fourth moment is the kurtosis

k ¼ ½1
N

PN
i¼1 ðxis Þ

4� � 3. The skewness is zero for symmetric

amplitude distributions and non-zero for asymmetric

distributions. The kurtosis measures the relative peakedness

or flatness of an amplitude distribution.

Spectral band power
Different physiological and pathological processes are

reflected by activity in different frequency ranges of the
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power spectrum {pf} of the EEG. According to these ranges,

a set of power spectral bands (d, q, a, b, g) were defined

in classical EEG analysis. The relative power contained in

these bands can be defined as

dr ¼
1

P

X4Hz
f¼0:5Hz

pf ; qr ¼
1

P

X8Hz
f¼4Hz

pf ; ar ¼
1

P

X13Hz
f¼8Hz

pf ;

br ¼
1

P

X30Hz
f¼13Hz

pf ; gr ¼
1

P

X100Hz
f¼30Hz

pf ‚

where P is the total power of the signal.

Spectral edge frequency
In a typical EEG signal, most of the power is contained

within the frequency band from 0 Hz up to 40 Hz: P40 Hz � P.

As a characterizing measure for the power distribution, the

so-called spectral edge frequency can be used (Stanski et al.,

1984), which is defined as the minimum frequency up to

which 50% the spectral power up to 40 Hz is contained in

the signal:

f 50 ¼ min f *

�����
Xf *

f¼0Hz

pf > P40Hz · 0:50

( )
:

Accumulated energy
The accumulated energy (Litt et al., 2001) is computed

from EEG time series by integrating the broadband signal

power (or energy) over a sequence of (possibly overlapping)

windows in a moving window analysis. According to

Parseval’s theorem, the average power of a signal is given

by the variance, so the accumulated energy for the t-th time

window is obtained by cumulatively summing the variance

of all past time windows:

AEðtÞ ¼
Xt
k¼1

s2
k‚

where s2
k is the variance of the k-th time window.

Characteristics of the autocorrelation function
The autocorrelation function of a time series is defined as

AðtÞ ¼ 1

ðN � 1Þs2

XN�t

i¼1

xixi�t

for t = 0, . . . ,N � 1 with s2 denoting the variance of

the signal. By definition, A(t) ranges between �1 and 1

with A(0) = 1. Provided that the time series is non-periodic,

the autocorrelation function decays from A(0) with increasing

values of t, and fluctuates around zero for larger t-values.

The slower A(t) decays initially, the stronger are the linear

correlations of the time series. Hence, an estimate of the

strength of linear correlations can be defined using the first

zero crossing

t0 ¼ min ft j AðtÞ ¼ 0g

of the autocorrelation function.

Hjorth parameters
Hjorth defined activity, mobility and complexity as ‘a set

of parameters intended as a clinically useful tool for

the quantitative description of an EEG’ (Hjorth, 1970). The

activity is proportional to the variance of a signal. The

mobility is defined as the variance of the slopes of the EEG

normalized by the variance of the amplitude distribution

of the time series. The complexity quantifies the variance of

the rate of slope changes with reference to an ideal sine

curve. In the frequency domain, the mobility and complexity

can be estimated from the second and fourth statistical

moment of the power spectrum:

HM ¼
XN/2

k¼1

pkk
2j HC ¼

XN/2

k¼1

pkk
4j

Autoregressive modelling
The most general linear (univariate) model for a time series

is the autoregressive moving average (ARMA) model. It is

composed of three linear model processes: a purely random

process (white noise), an autoregressive (AR) process and a

moving average (MA) process. An AR process is defined by

xi ¼
Xp
l¼1

alxi�l þ «i

and indicates that the value of the time series at time point

i is a linear combination of its p past values and a purely

random process «i. In order to account for possible correla-

tions in the noise, «i may be modelled equivalently as an MA

process

«i ¼
Xq
l¼1

bl«i�l;

indicating that the noise at time point i is a linear combination

of its q past values. Hence an ARMA model reads

xi ¼
Xp
l¼1

alxi�l þ
Xq
k¼1

bk«i�k‚

where the coefficients {al} and {bk} are to be determined

by fitting the data, typically using a least-squares or an

information-theoretic criterion. Identification of an

appropriate ARMA model allows the design of special filters,

forecasting time series or estimation of the power spectrum

and derived measures such as the so-called transfer func-

tion (Makhoul, 1973; Lopes da Silva, 1987; Lopes da Silva

and Mars, 1987). The evolution of different parameters

[model order, coefficients, prediction error or characteristics
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of the transfer function (Rogowski et al., 1981) or of the power

spectrum] over time can be used as measure profiles.

Univariate non-linear measures
While linear measures are calculated directly from the time

series or its power spectrum, a number of non-linear

measures have been derived from the theory of dynamical

systems (Schuster, 1989; Ott, 1993; Kantz and Schreiber,

1997) that are designed to quantify different properties

of so-called state space trajectories in a Cartesian space.

Calculation of these measures therefore requires recon-

struction of the state space trajectory from the scalar

time series {xi}, where i = 1, . . . ,N. This reconstruction

(time-delay embedding) can be achieved by means of delay

coordinates~xxi ¼ ðxi‚xiþt‚ . . . ‚xiþðm�1ÞtÞ (Takens, 1981) with

i = 1, . . . ,M = N � (m � 1) t, where f~xxig defines the

reconstructed state space trajectory. Here t is a time delay

and m is the embedding dimension, which, according to

Whitney’s theorem, must be chosen as m > 2 d + 1 (where d

is the dimension of the geometrical object formed by the

genuine trajectory in state space) if any exact determinism

present in the original (multi-variate) system is to be

preserved (Whitney, 1936). In case of simultaneous multi-

channel EEG recordings, an alternative embedding scheme

would be to use each channel as an axis of the Cartesian

space (spatial embedding). In this case the embedding

dimension m is fixed and equals the number of recording

channels. Alternatively, a combination of time-delay and

spatial embedding can be used.

Measures based on the correlation sum
The correlation sum (Grassberger and Procaccia, 1983a) is

an estimate of the local probability density in state space

(also referred to as correlation integral). It counts the

number of pairs of vectors in state space that are closer than

a given hypersphere radius «:

Cð«Þ ¼ 2

ðM �WÞðM �W � 1Þ
XM
i¼1

XM
j¼iþW

Qð«� k~xxi �~xxjkÞ‚

where k·k indicates some norm (e.g. the maximum norm) in

m dimensions and Q is the Heaviside step function (Q(a) = 0

for a < 0 and Q(a) = 1 for a > 0). The exclusion of

pairs closer in time than the length of the so-called Theiler

window W is essential to reduce the unwanted influence of

temporal correlations on C(«) (Theiler, 1986).

Correlation dimension
For deterministic dynamics the correlation dimension

(Grassberger and Procaccia, 1983a) allows to estimate the

number of active degrees of freedom. From the local slope

of the correlation sum

dð«Þ ¼ d lnCð«Þ
d ln «

‚

the correlation dimension is defined as

D2 ¼ lim
N!1

lim
«!0

dð«Þ:

From the limits it follows that the calculation of the cor-

relation dimension would require an infinite length N and

an unlimited accuracy of the time series. However, an estimate

of an effective correlation dimension (Grassberger et al., 1991;

see also Lehnertz and Elger, 1998) can be obtained if an

almost constant value of d(«) is found at least for a limited

range of « values, the so-called quasi-scaling region.

Correlation density
The correlation density is defined as the correlation sum for

some fixed hypersphere radius « = «0. Martinerie et al.

(1998) calculated this measure using a combination of time-

delay and spatial embedding of EEG time series. In the

literature (Cerf et al., 2000, 2004) the correlation density is

also referred to as Lerner density (Lerner, 1996).

Correlation entropy
The correlation entropy h2 (Grassberger and Procaccia,

1983b) is a lower bound of the Kolmogorov–Sinai entropy,

which describes the level of uncertainty about the future

state of the system, and therefore relates to predictability.

Provided a scaling region exists, h2 can be estimated from

the correlation sum as

h2 � ln
Cmð«Þ
Cmþ1ð«Þ

,

using an extrapolation to large embedding dimensions

m. Alternatively, an entropy estimate can be derived from the

sum of the positive Lyapunov exponents (Pesin’s identity).

Marginal predictability
On the basis of the correlation sum for different

embedding dimensions m, Savit and Green (1991) defined

predictability as

Sm ¼ Cmþ1

Cm

:

As a more sensitive discriminator of non-linear structure in

time series, Manuca and Savit (1996) proposed the ratio of

successive Sm values, defined as

Rm ¼ Sm

Sm�1

¼ Cmþ1Cm�1

C2
m

:

Li et al. (2003) and Drury et al. (2003) defined marginal

predictability as

dm ¼ Rm � 1

Rm

with the correlation sum Cm estimated for some fixed

hypersphere radius « = «0.
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Dynamical similarity index
This measure was designed by Le Van Quyen et al. (1999) to

measure the dynamical similarity between a running test

window and a reference period, usually selected from the

beginning of a recording and with a length of l times the

length of the test window. Before analysis, the signals from

every channel are transformed from the amplitude domain

into the domain of inter-event intervals. An event is defined as

the crossing from negative to positive amplitude values of the

original time series, and the sequence of intervals between

the times of subsequent crossings is used as signal represen-

tation in the inter-event-interval domain: Ii = Ti+1 � Ti

for i = 1, . . . ,N* � 1, where N* is the total number of

events, which generally varies for different windows. From the

inter-event-interval representation the dynamics are recon-

structed using conventional delay coordinates: ~aai ¼
ðIi‚Iiþt‚ . . .‚Iiþðm�1ÞtÞ for i = 1, . . . ,N* � (m � 1)t using

some high value of the embedding dimension m.

The reconstructed data from the reference period are then

transformed and projected into a reduced state space

spanned by the first ~mm < m principal components obtained

from a singular value decomposition: ~~aa~aai ¼ A~aai (Broomhead

and King, 1986). The same linear transformation matrix A is

subsequently applied to the embedded state space vectors

of every running test window yielding f~xxtgk¼1‚ ...‚Nt
, where

Nt denotes the number of transformed state vectors in the

test window t. In order to compare the dynamics of

the reference periods with that of the test window, the

transformed state vectors from the reference period are

down-sampled to a random subset f~yyigi¼1‚ ...‚Nr
�

f~~aa~aaigi¼1‚ ...‚N* with Nr ¼ N*div l such that the resulting

number of state vectors Nr corresponds approximately to

the different values of Nt.

The dynamical similarity index between the reference

period r and a test window t is then defined as

gt ¼
Crtffiffiffiffiffiffiffiffiffiffiffiffi
CrrCtt

p ,

where Crt is the cross-correlation sum (Kantz, 1994a) given by

Crt ¼
1

NrNt

XNt

k¼1

XNr

i¼1

Qð«� k~yyi �~xxtkkÞ‚

and Crr and Ctt are the (auto-)correlation sums of the

reference and test window, respectively:

Ctt ¼
1

N2
t

XNt

k¼1

XNt

i¼1

Qð«� k~xxti �~xxtkkÞ and

Crr ¼
1

N2
t

XNr

k¼1

XNr

i¼1

Qð«� k~yyi �~yykkÞ:

State space dissimilarity measures
Since the correlation sum estimates the local probability

density in state space, it provides a convenient way to

measure dissimilarity between two EEG time series. In a

statistical sense, one can quantify dissimilarity from the

inconsistency of two samples with the same distribution.

This can be based on the well known x2-test or on distance

measures such as the L1 norm (Hively et al., 2000; Hively

and Protopopescu, 2003):

x2 ¼
X
i

ðQi � RiÞ2

Qi þ Ri

‚

L1 ¼
X
i

jQi � Rij‚

where Qi and Ri denote local probability estimates in

state space based on the correlation sum for a running test

window and a reference period, respectively.

Largest Lyapunov exponent
The exponential divergence of nearby trajectories in state

space is conceptually the most basic indicator of deterministic

chaos and can be estimated using the largest Lyapunov

exponent Lmax. The first proposed algorithm to compute Lmax

from a time series (Wolf et al., 1985) suffers from severe

drawbacks that occur particularly with short and noisy time

series. Moreover, it strongly depends on parameters used for

the state space reconstruction and is computationally highly

expensive (Rosenstein et al., 1993). In order to avoid these

shortcomings, a combination of improved algorithms can be

used (Rosenstein et al., 1993; Kantz, 1994b) according to

which the Lmax can be estimated from

djðiÞ � Cje
LmaxiDt,

where dj(i) denotes the average divergence between two

trajectory segments at time ti. Cj with j = 1, . . . ,M is a constant

that is given by the initial separation of a reference vector~zzj
in state space and its nearest neighbour. In order to im-

prove statistics Kantz (1994b) proposed to search for all

neighbours starting within a hypersphere of radius «

around ~zzj using a box-assisted algorithm (Schreiber, 1995).

On the basis of the relation

ln djðiÞ � lnCj þ Lmax · i · Dt

the largest Lyapunov exponent is then calculated using a least-

squares fit to an average line defined by yðiÞ ¼ 1
Dt
h ln djðiÞi,

where h. . .i denotes the average over j.

In order to reduce the unwanted influence of temporal

correlations Rosenstein et al. (1993) suggested to choose a

Theiler window of a length given by the reciprocal of the

mean frequency of the power spectrum.

Local flow L*
The local flow, a measure derived from the coarse-grained

flow average (Kaplan and Glass, 1992), aims at discriminat-

ing deterministic from stochastic dynamics. For this tech-

nique the reconstructed m-dimensional state space is divided

into bm non-overlapping hyper-cubes. If the hyper-cube with

index j is passed nj times by the trajectory, a normalized
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vector vj,k will be generated for each pass (k = 1, . . . , nj)

whose direction is determined by connecting the points

where the trajectory enters and leaves the hyper-cube.

Summing up all vectors of passes through hyper-cube j, the

resultant vector Vj, normalized by the number of passes nj, is

Vj ¼ 1
nj

Pnj
k¼1 vj‚ k. The coarse-grained flow average L is then

defined as

L ¼
X
j

V 2
j � R2

1� R2

with R / 1ffiffi
n

p being the expected value for a vector addition

of n vectors of unit length yielded by a random walk in m

dimensions.

Rather than using a fixed time delay t, Andrzejak et al.

(2001) determined the local flow by summing up the coarse-

grained flow average for different values of t:

L* ¼
Xtmax

t¼tmin

LðtÞ:

Algorithmic complexity
Another approach to characterize time series is based

on the theory of symbolic dynamics (Hao, 1989). For this

approach, the time series is transformed into a sequence of

A symbols by partitioning the range of sampling values

and assigning a different symbol S to each interval of this

binning. Then each value of the time series is replaced by

the symbol of its interval. The thresholds of the partition

are chosen separately for each time series to yield a

homogeneous distribution of symbols. The resulting symbol

sequence {Si} with i = 1, . . . ,N is then investigated for its

complexity by estimating the size c({Si}) of its vocabulary.

This size is defined as the number of different words in a

Lempel–Ziv parsing (Lempel and Ziv, 1976) of the symbol

sequence. In this algorithm the symbol sequence is scanned

from the beginning to its end, and its complexity c({Si}) is

increased by one unit as soon as a new subsequence of

consecutive symbols is encountered in the scanning process

(Kasper and Schuster, 1987), and the following symbol is

regarded as the beginning of the next symbol sequence. This

value is normalized by the expected asymptotic value for a

random sequence of symbols of length N to yield the

algorithmic complexity:

AC ¼ logA N

N
· cðfSigÞ:

Surrogate time series and surrogate correction
The method of surrogate time series allows to test a specified

null hypothesis about the dynamics underlying a given time

series (for an overview, see Schreiber and Schmitz, 2000).

For this purpose, an ensemble of surrogate time series is

constructed from the original time series in such a way that

the surrogates have all properties included in the null

hypothesis in common with the original, but are otherwise

random. Then a certain measure, which has to be sensitive

to at least one property that is not included in the null

hypothesis, for example, non-linearity, is calculated for

the original and the surrogates. If the result for the original

time series deviates significantly from the distribution of

the surrogates, the null hypothesis can be rejected. The

probability of false rejections, that is, the nominal size of the

test, is adjustable by the number of surrogates. A common

type of surrogates are iterative amplitude-adjusted surro-

gates (Schreiber and Schmitz, 1996). These types of

surrogates allow testing of the null hypothesis that the

time series were measured from a Gaussian linear stochastic

and stationary dynamics by means of a static and invertible

but possibly non-linear measurement function. Starting

from a random permutation of the original amplitudes of

the time series, the surrogates are constructed by an iterative

algorithm that alternately adjusts the power spectrum and

the amplitude distribution to the original values, resulting in

a deviation of the respective other quantity. After a sufficient

number of iterations (typically 20–50), deviations of both

quantities from values of the original time series will be

reduced to negligibly small values.

In Andrzejak et al. (2001) and Mormann et al. (2005)

surrogate-corrected measures are defined as

SNM ¼ jNMEEG � NMSUR j

where NM is a placeholder for any non-linear univariate

measure and the over-bar denotes average over several sur-

rogates. The absolute value is taken to ensure that indications

of non-linear structure in a time series are always reflected by

an increase in values of the surrogate-corrected measures

regardless of whether this structure is reflected by higher

(as for L*, AC) or lower (as for D2, Lmax) values of the

respective non-linear measure. It may be noted that this

use of surrogates differs a little from their original purpose

since taking these differences can be regarded as an ‘offset

correction’ rather than as a hypothesis test, with the offset

given by linear properties of the dynamics.

Loss of recurrence
The loss of recurrence can be used to quantify the degree of

non-stationarity within a time series (Rieke et al., 2002,

2004). This measure analyses the distribution of distances

in time between reference vectors and their neighbouring

vectors in state space. A system is regarded as stationary if

the time index of a neighbour is statistically independent

from that of the reference. For non-stationary systems, the

absence of distant time indices in the neighbourhood of the

reference, that is, a loss of recurrence is expected.

Let U«ð~xxrÞ ¼ f~xxn : k~xxr �~xxnk<«g define a set of vectors

in the «-neighbourhood of ~xxr in an m-dimensional

reconstructed state space. «r is defined in dependence of

the reference ~xxr using a fixed number of k nearest

neighbours and the maximum norm as a metric. The lags
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lir ¼ jnir � rj of the i-th nearest neighbour of ~xxr are

transformed using the distribution function ~ll ¼ FrðlÞ, that

is, the a priori probability under stationary conditions that

the observed distance in time is less than or equal to l. The

distribution f ð~llÞ of all transformed time distances ~lln reflects

the non-stationarity of the system. For a stationary system

f ð~llÞ is uniformly distributed in the interval [0,1], and the

median m equals 0.5, whereas in case of non-stationarity,

the recurrence of related state space vectors is reduced, that

is, the neighbourhood of~xxr depends on the time index r and

furthermore the indices of the neighbouring vectors nir are

clustered around r. For non-stationary signals, the observed

distances in time are therefore on average smaller than

expected and thus the amount of lower values ~ll is increased,

whereas higher values are reduced, and the median m of

this distribution f ð~llÞ is <0.5. There is no need for a sur-

rogate correction of this measure as surrogate time series

are stationary by construction and the median m of the

distribution f ð~llÞ always matches 0.5 up to statistical

fluctuations.

Bivariate linear measures
Maximum linear cross-correlation
In order to quantify the similarity of two signals {xi} and {yi}

the maximum of a normalized cross-correlation function

can be used as a measure for lag synchronization

(Rosenblum et al., 1997):

Cmax ¼ max
t

CxyðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cxxð0Þ · Cyyð0Þ

p
�����

�����
( )

where

CxyðtÞ ¼
1

N � t

XN�t

i¼1

xiþtyi t > 0

Cyxð � tÞ t < 0

8>><
>>:

is the well-known linear cross-correlation function. Cmax is

confined to the interval [0, 1] with high values indicating that

the two signals have a similar course in time (though possibly

shifted by a time lag t) while dissimilar signals will result in

values close to zero.

Linear coherence
The coherence function measures the linear synchronization

between two signals {xi} and {yi} for a given frequency f and

is defined as

Gðf Þ ¼ Gxyðf Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gxxðf Þ · Gyyðf Þ

p
�����

�����
where

Gxyðf Þ ¼ FT½x�ðf Þ · FT½y�*ðf Þ

is the sample cross-spectrum, with FT denoting the Fourier

transform and the asterisk denoting complex conjugation. The

coherencefunctionalsorangesbetween 0(lowcoherence) and1

(high coherence) and is useful when synchronization is limited

to some particular frequency band, as it is usually the case in

EEG signals (see Quian Quiroga et al., 2002).

Bivariate non-linear measures
Non-linear interdependence
The non-linear interdependence (Arnhold et al., 1999) as a

measure for generalized synchronization (Rulkov et al., 1995)

between two EEG signals {xi} and fyig is calculated after

reconstruction of the state space trajectories f~xxig and f~yyig for

these signals. Let aij and bij with j = 1, . . . , k denote the time

indices of the k nearest neighbours in state space of~xxi and~yyi,
respectively. For each~xxi the squared mean Euclidean distance

to its k nearest neighbours is given by

xRi
ðkÞ ¼ 1

k

Xk
j¼1

ð~xxi �~xxaij
Þ2

while the y-conditioned mean-squared Euclidean distance is

constructed by replacing the nearest neighbours by the equal

time partners of the closest neighbours of ~yyi:

xjyRi
ðkÞ ¼ 1

k

Xk
j¼1

ð~xxi �~xxbij
Þ2:

yRi
ðkÞ and xjyRi

ðkÞ are defined accordingly.

As measures for non-linear interdependence Arnhold et al.

(1999) proposed

xjyS ¼ 1

M

XM
i¼1

xRi
ðkÞ

xjyRi
ðkÞ

and

xjyH ¼ 1

M

XM
i¼1

log
xRi

ðMÞ

xjyRi
ðkÞ

with

xRi
ðMÞ ¼ 1

M � 1

XM
j¼1‚ j6¼i

ð~xxi �~xxjÞ2:

yjxS and yjxH are defined accordingly. Both measures yield

high values for high degrees of non-linear interdependence

and low values for independent time series. While xjyS is

restricted to the interval [0, 1], xjyH is not normalized and

might also have slightly negative values.

Dynamical entrainment
Iasemidis et al. (2001) defined a measure they termed

‘entrainment between two brain regions’ as the statistical

difference between the largest Lyapunov exponents Lmax

(see section Univariate non-linear measures) over a number
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of l consecutive time windows for two signals recorded from

electrode sites x and y by using the T-index derived from a

paired t-test for comparison of means:

Txy ¼
ffiffi
l

p j hLmax ‚ x � Lmax ‚ yi j
sxy

‚

with h. . .i denoting the mean over l and sxy the corresponding

standard deviation.

According to their interpretation of this measure, a low

T-index corresponds to a high entrainment and vice versa.

By minimizing the function

f ð~ccÞ ¼~cctA~cc

with ~cc 2 f0‚1gn and
Xn
i¼1

ci ¼ k and A ¼ ðTxyÞx‚ y¼1‚ ...‚n

where~cct denotes the transposed vector~cc, they selected those k

electrode sites out of a total of n that showed the highest

mutual entrainment.

Measures for phase synchronization
Phase synchronization (Huygens, 1673) is traditionally

defined as phase locking [fx(t) � fy(t) = const] or, in the

case of noisy and/or chaotic systems (Rosenblum et al.,

1996), as phase entrainment [fxðtÞ � fyðtÞ < const], with

fx(t) and fy(t) denoting the phase variables of two

oscillating signals x(t) and y(t).

Three different measures for phase synchronization have

been proposed. The first measure, the mean phase coherence

(Mormann et al., 2000), is defined as

R ¼ 1

N

XN
j¼1

ei½fxðtjÞ�fyðtjÞ�

�����
�����:

The second and third measure are termed index based on

conditional probability and index based on Shannon entropy

(Tass et al., 1998). For these measures, an equidistant binning

of the interval [0, 2p] is required where the number of bins

is given by L ¼ e0:626þ0:4 ln ðN�1Þ as in Rosenblum et al. (2001).

The index based on conditional probability is then

defined as

lcp ¼
1

L

XL
l¼1

jrlj

where

rl ¼
1

Ml

X
j

fxðtjÞ2½ lL2p‚
lþ1
L
2p�

eifyðtjÞ

with

Ml ¼ fxðtjÞ j fxðtjÞ 2
l

L
2p‚

lþ 1

L
2p

� �� �����
����

denoting the number of phase values fx(t) contained in the

bin l. (jf . . .gj denotes the number of elements contained

in the set f . . .g.)

The index based on Shannon entropy is given by

rse ¼ 1þ 1

ln L

XL
l¼1

pl ln pl

with

pl ¼
jffxðtjÞ � fyðtjÞ j fxðtjÞ � fyðtjÞ 2 ½ l

L
2p‚ l þ 1

L
2p�gj

jffxðtjÞ � fyðtjÞgj

denoting the relative frequency of finding a phase difference in

a certain bin l.

All three phase-synchronization measures are confined to

the interval [0, 1] where high values indicate a high degree

of phase synchronization and low values correspond to

unsynchronized signals.

In order to measure changes in phase synchronization of

two signals x(t) and y(t) over time, it is first of all necessary

to determine their phases fx(t) and fy(t). To this aim, two

different approaches are frequently used:

One is the analytic signal approach (Gabor, 1946; Panter,

1965), which defines an instantaneous phase

fðtÞ ¼ arctan
~ssðtÞ
sðtÞ

for an arbitrary signal s(t) using the Hilbert transform

~ssðtÞ ¼ 1

p
p:v:

Z þ1

�1

sðt0 Þ
t � t

0 dt
0

(p.v. denoting the Cauchy principal value).

This phase definition can be used for broad-band

synchronization analysis or after band-pass filtering of the

original signals.

The second approach (Lachaux et al., 1999) uses a definition

based on the Wavelet transform, yielding a band-specific

synchronization index. Here the phase variable is defined as

fðtÞ ¼ arctan
ImWðtÞ
ReWðtÞ

using the Wavelet coefficients

WðtÞ ¼
Z þ1

�1
Cðt � t

0 Þsðt0 Þdt0

of a complex Morlet Wavelet

CðtÞ ¼ ðeif 0t � eif
2
0s

2/2Þ · e�t2/2s2

‚

where f0 is the centre frequency and s the decay rate of the

wavelet that governs the width of the frequency band centred

around f0.
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