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To detect directional couplings from time series various measures based on distances in reconstructed state
spaces were introduced. These measures can, however, be biased by asymmetries in the dynamics’ structure,
noise color, or noise level, which are ubiquitous in experimental signals. Using theoretical reasoning and
results from model systems we identify the various sources of bias and show that most of them can be
eliminated by an appropriate normalization. We furthermore diminish the remaining biases by introducing a
measure based on ranks of distances. This rank-based measure outperforms existing distance-based measures
concerning both sensitivity and specificity for directional couplings. Therefore, our findings are relevant for a
reliable detection of directional couplings from experimental signals.
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I. INTRODUCTION

A detection of directional couplings between two dynami-
cal systems X and Y from the analysis of signals measured
from them is key to an understanding of many dynamics in
nature. Assuming X and Y to be linear stochastic Gaussian
processes, the concept of Granger causality �1� can be imple-
mented using linear regression or autoregressive modeling.
This approach can be combined with graphical models �2�
and directional couplings can be studied in a multivariate
context �3�. Furthermore, different approaches were pro-
posed to detect directional couplings from nonlinear or non-
Gaussian processes �see �4� for a review�, including nonlin-
ear Granger causality �5�, transfer entropy �6�, phase
dynamics measures �7�, as well as various measures evaluat-
ing distances of conditioned neighbors in reconstructed state
spaces �8,9�. Applications to experimental time series in
many scientific fields are found in different branches of
physics, engineering, atmospheric sciences, neuroscience, bi-
ology, or economy. There is, however, evidence that all these
approaches can be affected by asymmetries in the dynamics’
structure or noise level �e.g., �6,9–11��. Here, we focus on
the effect of these asymmetries on existing state space ap-
proaches. We furthermore introduce a rank-based measure
and illustrate its robustness against such asymmetries. For
that purpose we analyze the Lorenz dynamics as a represen-
tative example of a model system. For such a model system
we can adjust the coupling strength and noise level which
allows us to evaluate the sensitivity and specificity of the
measures under controlled conditions. We focus on one rep-
resentative example to provide a thorough statistical assess-
ment and theoretical reasoning for the different sources of
biases arising at different coupling strengths and asymme-
tries in the dynamics’ structure, noise color, or noise level.

The aforementioned state space approaches mainly con-
sider the case where X and Y are assumed to be separate
deterministic dynamics which both exhibit an independent
self-sustained motion. It is further assumed that if there is a
coupling it is unidirectional and too weak to induce a syn-
chronized motion. Importantly, the dynamics are assumed to
be stationary for the time window under investigation. It is
not assumed that a meaningful instantaneous phase can be

extracted from the signals. Under these assumptions, direc-
tional couplings can in principle be detected by quantifying
the probability with which close states of the driven dynam-
ics are mapped to close states of the driving dynamics
�8,9,12,13�.

II. METHODS

Various distance-based approaches were proposed to
evaluate this fundamental criterion �e.g., �8,14–17��. For
scalar time series xi and yi�i=1, . . .N�� simultaneously mea-
sured from X and Y, respectively, the dynamics are recon-
structed using delay coordinates xi= �xi , . . .xi−�m−1���, yi
= �yi , . . .yi−�m−1��� with embedding dimension m and delay
��i=1, . . .N=N�− �m−1��� �15�. By vi,j and wi,j�j=1, . . .k�
we denote the time indices of the k spatially nearest neigh-
bors of xi and yi, respectively. From these we exclude tem-
poral neighbors within �vi,j − i��W and �wi,j − i��W �15�. For
each xi, the mean squared Euclidean distance to its k nearest
neighbors is Ri

k�X�= 1
k � j=1

k �xi−xvi,j
�2, and the Y-conditioned

distance is: Ri
k�X �Y�= 1

k � j=1
k �xi−xwi,j

�2. The mean distance to
all other points is Ri�X�= 1

N−1� j=1,j�i
N �xi−x j�2 �18,19�. Based

on these distances one can define:

S�X�Y� =
1

N
�
i=1

N
Ri

k�X�
Ri

k�X�Y�
, �1�

H�X�Y� =
1

N
�
i=1

N

log
Ri�X�

Ri
k�X�Y�

, �2�

M�X�Y� =
1

N
�
i=1

N
Ri�X� − Ri

k�X�Y�
Ri�X� − Ri

k�X�
, �3�

Eqs. �1� and �2� were defined in �8�. Equation �3� was de-
rived in �16� from a measure proposed in �14� and indepen-
dently from �16� in �15�. We here propose the following
rank-based statistics: for each xi, let gi,j denote the rank that
the distance between xi and x j takes in a sorted ascending list
of distances between xi and all x j�i. The Y-conditioned mean
rank is then Gi

k�X �Y�= 1
k � j=1

k gi,wi,j
, and we here define

PHYSICAL REVIEW E 80, 026217 �2009�

1539-3755/2009/80�2�/026217�5� ©2009 The American Physical Society026217-1

http://dx.doi.org/10.1103/PhysRevE.80.026217


L�X�Y� =
1

N
�
i=1

N
Gi�X� − Gi

k�X�Y�
Gi�X� − Gi

k�X�
, �4�

where Gi�X�= N
2 and Gi

k�X�= k+1
2 denote the mean and mini-

mal mean rank, respectively. The measures S�Y �X�, H�Y �X�,
M�Y �X�, and L�Y �X� are defined by exchanging the role of X
and Y in the above definitions. We use the notation A to refer
to the group of all measures S, H, M, and L.

A fundamental signature of nonsynchronizing couplings
X→Y is that close states of Y are mapped to close states of
X with a probability increased compared to independent dy-
namics. This signature is quantified by the measures A�X �Y�
which increase with increasing coupling strength. However,
an increased probability of the opposite mapping, i.e., close
states of X are mapped to close states of Y, also holds, al-
though to a weaker degree. Therefore, for couplings X→Y
also A�Y �X� increase compared to values for uncoupled dy-
namics �e.g., �9�.�. Hence, A�X �Y� by themselves are not
specific for couplings X→Y. Therefore, we follow e.g.,
�17,20,21� in defining �A=A�X �Y�−A�Y �X� and here test
whether �A�0 is a sensitive and specific criterion for non-
synchronizing couplings X→Y.

As stated above, to use controlled conditions, we analyze
uncoupled as well as unidirectionally coupled nonidentical
Lorenz dynamics superimposed with different types of noise.
The Lorenz dynamics X : v̇1=10�v2−v1�, v̇2=39v1−v2−v1v3,
v̇3=v1v2− 8

3v3, Y : ẇ1=10�w2−w1�+��v1−w1�, ẇ2=35w1

−w2−w1w3, ẇ3=w1w2− 8
3w3 was integrated using a fourth

order Runge-Kutta algorithm with fixed step size of 0.005
and a sampling interval of 0.03 time units, which corre-
sponds to approximately 20 samples per cycle. We used ran-
dom initial conditions and applied 106 preiterations to dimin-
ish transients. As deterministic time series we use x̃i=v1�ti�
and ỹi=w1�ti� and an autoregressive processes as noise time
series: �i+1

X,Y =aX,Y�i
X,Y +�i+1

X,Y. Here �i
X,Y denotes uncorrelated

Gaussian noise with zero mean and unit variance. All ex-
amples studied here can then be written in the general form:
xi=dXx̃i+nX�i

X, yi=dYỹi+nY�i
Y for i=1, . . .N=2048. Through-

out all simulations we use fixed values of k=5, and W=50
and set m and � as specified below.

III. RESULTS

As a first example we use Lorenz dynamics superimposed
with Gaussian uncorrelated noise �dX,Y =1, aX,Y =0, Fig. 1�.
Apart from uncoupled dynamics ��=0�, we study coupled
dynamics with � separated by factors of 1.05 between 0.05
and 18. Within this set of coupling strengths, �GS=9.28 is the
lowest value for which generalized synchronization is at-
tained, as determined from the identical synchronization of
two replicas of the driven Y dynamics started at different
initial conditions �22�. Apart from noise-free dynamics we
use the noise amplitudes IX,Y = �0.125�1.5n�	X,Y for n
=0, . . .12, where 	X,Y denote the standard deviation of x̃i and
ỹi, respectively. The noise is superimposed either only to the
driver: nX� IX, nY =0; to the driver and to the response: nX

� IX, nY � IY; or only to the response: nX=0, nY � IY.
For the noise-free dynamics the coupling direction is cor-

rectly detected by �A�0 to a different degree for H, M, and

L �Fig. 1�. For asymmetric noise levels some biases occur
resulting in �A
0, i.e., the detection of the wrong coupling
direction, for some range of �. Importantly, comparing H, M,
and L, the rank-based measure L proposed here is least af-
fected by asymmetric noise. For the measure S, a more com-
plicated picture is obtained which allows us to discuss in
detail the various sources of biases in the following.

It was already indicated by �8� that the effective dimen-
sion DX is reflected in the distances defined above as:
E�Ri

k�X� /Ri�X����k /N�2/DX and analogously for Y. Here
E� · � denotes the expected value across independent realiza-
tions of the dynamics. Since generally for zero and very
small couplings E�Ri

k�X �Y��=ERi�X�, in this range of � we
have S�X �Y���k /N�2/DX, assuming ergodicity. Hence,
E��S��0 for DX�DY. Therefore, generally �S is nonzero
even for uncoupled noise-free deterministic dynamics with
slightly different effective dimensions. Here and below we
simplify the notation E��A� to �A and apply the Wilcoxon
test to determine whether nonzero values of �A are signifi-
cant �See black and gray dots in Figs. 2 and 3�. For the given
Lorenz dynamics we have DX�DY at �=0 and accordingly
get �S�0 �Figs. 1�a� and 2�a�–2�c��. However, to be specific
for couplings we should get �A=0 for such independent pro-
cesses. Upon increasing of � for nX,Y =0, DY at first increases
due to the incorporation of the driver’s degrees of freedom,
and later decreases toward and beyond �GS due to the col-
lapse of the joint dynamics to the synchronization manifold
�9�. For the given dynamics this local maximum of DY is
reflected in �S
0 found for an intermediate � range. Only
for a narrow � range close to �GS the stronger mapping of
close states in Y to close states in X leads to �S�0. Upon
increasing of the noise level the effective dimension con-
verges to the embedding dimension m. Therefore, for asym-
metric noise levels of X and Y the difference in DX and DY
and thereby �S is dominated by this asymmetry. Even for
symmetric noise levels nX=nY measured relative to the re-
spective standard deviation of X and Y, the impact of this
noise can be asymmetric depending on the fine structure of
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FIG. 1. �Color� Dependence of A on � for coupled Lorenz dy-
namics �m=8, �=4�. For the noise-free case with A�X �Y� in red and
A�Y �X� in blue. For nX=0.95	X, nY =0 with A�X �Y� in black and
A�Y �X� in green. In panel A the blue curve almost covers the red
one. Error bars depict � one standard deviation. Vertical lines mark
�GS.
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the dynamics. A further source of bias, that S shares with H,
is its nonlinear dependence on the conditioned distances.
�More specifically the asymmetry of this nonlinearity around
E�Ri

k�X �Y�� is problematic cf. �20��. The impact of the non-
linearity depends on the variance of Ri

k�X �Y� which in turn
depends in a nontrivial way on intrinsic properties of X and
Y, the relative noise amplitude, noise color, and the param-
eters m, �, and k. Hence, this nonlinearity further contributes
to �S�0 for independent but asymmetric dynamics �Figs.
1�a� and 2�a�–2�c��.

For uncoupled noise-free Lorenz dynamics we get �H
=0 �Figs. 1�b�, 2�d�–2�f��. With increasing coupling strength

the stronger mapping of close states in Y to close states in X
leads to �H�0. Therefore, at first sight �H�0 seems sen-
sitive to and specific for couplings X→Y. However, at zero
and low � and for asymmetric noise levels the nonlinear
dependence on the conditioned distances leads to �H�0 for
nX�nY, and �H
0 for nX
nY. Furthermore, since
E�Ri

k�X �Y��=ERi
k�X� for � close to �GS a term proportional

to �k /N�DX/2 contributes to H�X �Y�. In consequence for DY
�DX the value of �H is increased. For symmetric noise
levels, this supports the detection of the correct coupling
direction because DY �DX due to the coupling. Asymmetric
noise levels, however, bias �H at high �. Nevertheless, for
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FIG. 2. �Color� Dependence of �A on � for m=8, �=4 for coupled Lorenz dynamics superimposed with noise. We used 1000 indepen-

dent realizations of x̃i and ỹi for each � and added independent realizations of �i
X and �i

Y for each noise amplitude specified in the text �A,
D, G, J: noise on X; B, E, H, K: noise on X and Y; C, F, I, L: noise on Y�. From blue to red colors indicate increasing noise levels. Error bars
depict � one standard deviation and are shown for nX,Y =0 only. Black and gray dots indicate significantly positive and negative �A values,
respectively �Wilcoxon signed rank test at p=0.001�. Vertical lines mark �GS.
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moderate noise levels H is more robust for the detection of
weak directional couplings than S �9� �Figs. 1�b�, 2�d�–2�f��.

Therefore, as already indicated by �9�, the value of �S
and �H not only reflect the mapping of close states in one
dynamics to close states in the other but also the interplay of
different biases. Before examining the impact of these biases
on M and L we address a problem shared by the measures S,
H, M, and L that does not express any bias. Rather this
problem is not only affecting state space based measures but
shared by the above mentioned other coupling direction de-
tection techniques applied to strongly coupled dynamics.
Here this problem leads to the following effect: regarding
intermediate symmetric noise levels for strong couplings we
find �A
0 for all measures �Fig. 2�b�, 2�e�, 2�h�, and 2�k��.
Here both A�X �Y� and A�Y �X� attain high values, and �A
can have different signs or vanish depending on the dynam-
ics making a reliable detection of a coupling direction im-
possible �Fig. 1�. Furthermore, even symmetric noise levels
in general have different impacts on the mappings of close
states in the one dynamics to close states in the other, due to
their different local slopes. The mappings’ geometry and
thereby A�X �Y� and A�Y �X� as well as their noise robustness
depend on the specific dynamical system. We should note
that L is least affected by this problem.

For independent dynamics generally the expected values
of M�X �Y�, M�Y �X� and thereby the one of �M are all zero
�Figs. 1�c� and 2�g�–2�i�� �23�. This is due to the linear de-
pendence on the conditioned distances Ri

k�X �Y�, and any bias
caused by the nonlinearities described above for S and H
does not affect M. Nonetheless, factorizing the term Ri�X� in
M�X �Y�, we see that the slope of this linear dependence is
determined by the denominator �Ri�X��a�k /N�2/DX −1�	,
where a is some unknown factor. Therefore, for zero cou-
pling the across realization variance of �M depends on DX
and DY while the mean remains unaffected and zero �this will
be appreciated better in Fig. 3�. For � close to �GS, also the
numerator of M�X �Y� tends to 1− �b�k /N�2/DX�. Here b is
different from a and depends on �. Given that, for � close to
�GS the measure M�X �Y� behaves similarly to H�X �Y� in that
lower values are obtained for a higher DX though this bias is
less pronounced for M �Figs. 1�c� and 2�g�–2�i��.

All advantages gained by virtue of the appropriate nor-
malization of M are inherited by L. The remaining depen-
dence on the dimensionality for � close to �GS is diminished
since in contrast to distributions of distances, distributions of
ranks of distances are always uniform. Notice that although
this bias is still significant for a smaller region of asymmetric
noise levels and coupling strengths, its absolute value is sub-
stantially lower for L than for M �Figs. 1�d� and 2�j�–2�l��.
As mentioned above for � close to �GS a reliable coupling
direction detection is impossible since M�X �Y�, M�Y �X� and
L�X �Y�, L�Y �X� are all close to one. However, for noisy
dynamics these quantities decrease hiding the unreliability of
the coupling direction. This decrease is less asymmetric for L
than for M, representing an important advantage of L.

To further study the specificity of �A�0 for couplings
X→Y and the influence of the embedding parameters, we
now focus on independent dynamics. At first we consider
two examples of uncoupled Lorenz dynamics superimposed
with asymmetric noise levels. While both examples share

�=0, dX,Y =1, aY =0, and nX= �0,0.25,0.5,1 , . . . ,128�, we
have aX=0, nY =4 in the first and aX=0.97, nY =0 in the sec-
ond example. Here nX,Y are given as unitless amplitudes not
related to the standard deviation of x̃i and ỹi. Again nonzero
values for �H and �S are obtained for these independent
dynamics. Due to the dominance of the bias related to asym-
metric effective dimensions the sign of �S is independent of
the embedding parameters �Figs. 3�a� and 3�e��. In contrast,
for H the only bias for uncoupled dynamics is the nonlinear
dependence on Ri

k�X �Y�. The variance of Ri
k�X �Y� and

thereby the sign of �H depend on the embedding parameters
and asymmetry of the noise amplitudes �Fig. 3�b� and 3�f��.
In contrast, the mean values of �M and �L are never sig-
nificantly different from zero. Only their standard deviation
is influenced by the relative noise levels and m and �. In
consequence, not a single false positive coupling detection is
obtained by M and L �Figs. 3�c�, 3�d�, 3�g�, and 3�h��.

As last example we use purely stochastic time series with
asymmetric degrees of autocorrelation dX,Y =0, aY =0.5,
nX,Y =1, and aX= �0.99,0.98,0.95,0.9,0.8,0.65,0.5,0.35,
0.2,0�. For lower values of the embedding window �m
−1�� a stronger autocorrelation is reflected in a lower effec-
tive dimension. Accordingly �S�0 and �H
0 for aX
aY

and vice versa for aY 
aX �Fig. 3�i� and 3�j� and cf. �24��.
For high embedding windows and in particular for high � the
impact of short correlations is reduced since the state space is
filled more homogeneously. In consequence, the biases of S
and H due to the nonlinear dependence on the conditioned
distances become more relevant resulting in different signs
of �S and �H. Like for the two previous examples �M and
�L exhibit not a single false positive coupling detection
�Figs. 3�k� and 3�l��.

IV. CONCLUSIONS

We here proposed a rank-based measure for the estima-
tion of directional couplings which is robust against asym-
metries in the dynamics’ structure or noise level. In particu-
lar, considerations about the dimensionality of nonlinear
dynamics or the effect of noise on local densities can also be
valuable to study approaches such as transfer entropy or non-
linear Granger causality, since they are also based on local
estimations of the dynamics’ geometry. For the measures
considered here, by virtue of their common more appropriate
normalization, the measures �M and �L are clearly more
sensitive and specific for directional couplings than �H and
�S. Furthermore, the use of rank statistics endows �L with a
higher robustness as compared to �M.

Rank transformations were previously used for the calcu-
lation of other measures of interdependence, for example the
mutual information �25,26�. However, for these techniques a
global rank transformation of the time series is performed.
This is conceptually different from our approach since we
use local ranks of distances of spatially nearest neighbors of
individual embedding vectors in reconstructed state spaces.

We here illustrate our findings using a thorough statistical
assessment of coupled and uncoupled Lorenz dynamics as a
representative example. Analogous results were obtained for
other model systems. Therefore, our rank-based measure L
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promises to reliably detect directional couplings also from
experimental signals. This holds in particular when asymme-
tries in the dynamics’ structure, noise color, or noise level
might be present. It is important to keep in mind, however,
that in application to experimental data other types of biases
that were not considered here can affect any coupling detec-
tion technique. In particular, the assumption that the dynam-
ics are at least approximately stationary can be violated. Fur-
thermore spurious detections of interdependence can be
caused by mixing of independent sources through the record-
ing process. Therefore, the degree to which the improve-
ments shown here for the rank-based measure L result in a

substantial improvement in the detection of meaningful di-
rectional couplings from experimental data remains subject
to future work.
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