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Testing the null hypothesis of the nonexistence of a preseizure state
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A rapidly growing number of studies deals with the prediction of epileptic seizures. For this purpose, various
techniques derived from linear and nonlinear time series analysis have been applied to the electroencephalo-
gram of epilepsy patients. In none of these works, however, the performance of the seizure prediction statistics
is tested against a null hypothesis, an otherwise ubiquitous concept in science. In consequence, the evaluation
of the reported performance values is problematic. Here, we propose the technique of seizure time surrogates
based on a Monte Carlo simulation to remedy this deficit.
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Epilepsies are characterized by recurrent and often se
malfunctions of the brain that manifest themselves as epi
tic seizures. Most epilepsy patients experience the onset
seizure as a sudden and unexpected event. Guided by ba
priori and a posteriori considerations, however, it has be
hypothesized that the transition to the seizure~ictal! state
might not be an abrupt phenomenon but rather evolves v
temporally extended preictal state~e.g., Ref.@1#!. Provided
that such a preictal state detection could be achieved wi
sufficient sensitivity and specificity, seizure anticipation a
prevention technologies could be envisaged which would
of great benefit for epilepsy patients. In Refs.@2–4#, it has
been investigated whether information about an impend
seizure can be extracted from the electroencephalog
~EEG! using differentcharacterizing measuresderived from
linear or nonlinear time series analysis. Common to th
studies is a two-step procedure: First, a characterizing m
sure is calculated for a multichannel EEG using a movi
window technique. In a second step, the resulting spatiot
poral profile of the characterizing measure is analyzed
means of an often highly elaborated evaluation scheme a
ing at an extraction of information specific for the preic
state. As distinct and complementary as the different
proaches are, in the context of the present study, they wil
termed asseizure prediction statisticsin their collectivity.
Their output in terms of sensitivity and specificity will b
denoted asperformance.

Let us now consider the following null hypothesis: ‘‘Th
transition from the interictal to the ictal state is an abru
phenomenon. An intermediate preictal state does not ex
Despite the fact that in this case, no information predictive
impending seizures could be extracted from the EEG, m
of the seizure prediction statistics would probably still rend
nonzero performance values. Moreover, ana priori estima-
tion of these performance values is problematic. Hence,
impossible to decide whether a given performance value
tained from real data indicates the existence of a prei
state or whether it is consistent with the null hypothe
stated above.
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A similar problem is known from the application of non
linear time series analysis techniques to stochastic dynam
The framework of nonlinear time series analysis compri
of a number of measures that allow the characterization
nonlinear deterministic dynamics@5#. For most of these mea
sures, however, the range of values obtained for nonlin
deterministic dynamics and for linear stochastic dynam
overlap substantially@6#. It is, therefore, impossible to decid
whether a given value of a nonlinear measure calcula
from some unknown time series reflects a property of
underlying nonlinear deterministic dynamics or whether it
consistent with a linear stochastic model. This ambiguity h
been addressed by the method of surrogate data@7#. This
method allows the testing of a specified null hypothe
about the dynamics underlying a given time series. For
technique, which can be regarded as a Monte Carlo sim
tion, an ensemble of surrogate time series is construc
from the original time series in such a way that they have
the properties that are consistent with this null hypothesis
common with the original, but are otherwise random. A d
criminating statistics, which has to be sensitive to at least
property that is not consistent with the null hypothesis,
calculated for both the original time series and the sur
gates. In case the null hypothesis is the assumption o
linear stochastic process, a measure derived from nonlin
time series analysis can be used as a discriminating statis
If the result for the original deviates from the distribution
the values obtained from the surrogates, the null hypoth
can be rejected at a level of significance determined by
number of surrogates used. In the beginning, the metho
surrogates was mostly used to test the null hypothesis
linear stochastic model and was regarded exclusively a
test for nonlinearity. Later, it has been understood to b
more general, and therefore, also a more powerful conc
In Ref. @8#, nonlinearity was even explicitly included in
null hypothesis. Furthermore, surrogate algorithms h
been developed that allow the testing of almost arbitrary n
hypotheses@9#. Problems associated with false positive r
jections of null hypotheses have been discussed in Ref.@10#.

In this paper, we propose a further generalization of
concept of surrogates by constructingseizure time surrogates
©2003 The American Physical Society01-1
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that allow one to validate the results of seizure predict
statistics. Given a continuous EEG recording, seizure t
surrogates can be constructed by replacing the original
zure times with times randomly chosen from the interic
intervals. Specified properties of the original sequence ca
imposed as constraints on the surrogate seizure onset ti
Subsequently, any given seizure prediction statistics can
carried out for both the original seizure times and the su
gates. Provided that a preictal state exists and the predic
statistics is able to detect it, the statistics’ performan
should be highest for the original seizure times. A simi
approach is used in seismology, where null hypothesis t
are regarded as inevitable to evaluate the performanc
earthquake prediction algorithms@11#.

To illustrate this technique, we analyzed the spatiotem
ral distribution of a nonlinear measure that was calcula
from a quasicontinuous EEG recorded over six days du
the presurgical work up@12# of an epilepsy patient indepen
dently from the design of our retrospective study. Using i
planted electrodes, equipped with a total of 48 separate
tacts, the EEG was measured directly at the surface of
cortex and within deeper structures of the brain. The E
data was sampled at 200 Hz using a 16 bit analog-to-dig
converter and filtered within a frequency band of 0.53–1
Hz.

Figure 1 shows a scheme of events that took place du
the recording time and that have to be taken into accoun
the generation of surrogate seizure onset times. Twice
patient was briefly~13 and 54 min! disconnected from the
EEG acquisition system. A longer discontinuity~340 min!
was necessary to carry out a magnetic resonance ima
scan to determine the exact location of the implanted e
trodes. All ten seizures occurred spontaneously within
second half of the recording. The latency of the first seiz
can be explained by the remaining effect of antiepilep
drugs that were withdrawn after implantation of the ele
trodes. During the first three days, only three subclini
events took place, i.e., events during which seizurelike ac
ity can be observed in the EEG while the patient does
show any clinical signs of an ongoing seizure. On the th
day, the patient was asked to perform a hyperventilation
seizure provocation technique that may cause alteration
the EEG. For our study, four intervals of 20 min starting
the beginning of both the hyperventilation and the three s
clinical events, as well as ten intervals of 1 h starting at the

FIG. 1. Temporal distribution of relevant events that occur
during a six-day EEG recording from an epilepsy patient~lower
row: 3 seizures,s subclinical events,n hyperventilation, and
gray vertical bars: discontinuities. Four exemplary seizure time
rogates are displayed in the upper rows. Diamonds denote surro
seizure onset times established by the constrained randomiz
procedure described in the text.
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onset of the seizures were excluded from the analysis.
last step was carried out since the ictal and postictal E
differs substantially from the EEG recorded during the int
ictal state. Both these exclusions and the aforementioned
continuities will be referred to as recording gaps. The
maining length of the analyzed EEG amounted to 101.1

In total, 19 seizure time surrogates were generated
replacing original seizure times with times randomly chos
in the interictal intervals~cf. Fig. 1!. The following proper-
ties of the original seizure times were imposed as constra
on the seizure time surrogates: The total number of seiz
(510), the distribution of intervals between consecutive s
zures, and the clustering of the seizures in the second ha
the recording. The intervals between consecutive seizu
and the interval from the first seizure back to an arbitrar
defined starting pointT0 at 12 a.m. on the third day ar
called D1 , . . . ,D10. For the generation of each of the se
zure time surrogates, the following steps were carried o
First, a new starting point was defined asT0* 5T02«(1 h),
with « being a random number uniformly distributed
@0,4#. Starting at T0* , surrogate seizure onset time
T1* , . . . ,T10* were generated from a random permutation
D1 , . . . ,D10. The sequence was discarded whenever a
cording gap was located within the last hour prior to any
the T1* , . . . ,T10* .

As a characterizing measure of the EEG, we used
degree of nonlinear determinismj. Following Ref. @13#, j
was defined from a combination of the coarse grained fl
averageL @14# and iterative amplitude adjusted surrogat
@15#. As a direct test for determinism,L quantifies the align-
ment of nearby trajectory segments in state space. Here
use of surrogates is essential to correct an alignment th
caused by autocorrelations rather than by deterministic
namics. Using a moving-window technique, the EEG w
divided into nonoverlapping segments of 20.48 s (N54096
data points!. For each of these segments, a set of four su
gates was generated. The dynamics were reconstructed u
the method of delays@16# with a fixed embedding dimensio
(m56) and varying time delay t. We defined j
[(t55

20 (LEEG2^LSUR&)(t), with LEEG denoting the value
obtained for the EEG segment, and^LSUR& denoting the
mean value obtained for the surrogates. All parameters w
adopted from a previous study in order to avoid any
sample overtraining. Only the number of surrogates was
duced from nine to four since the latter value was found
provide a sufficiently reliable estimate of^LSUR&. A j(t)
profile was obtained for each of the 48 EEG channels
segmentst51, . . . ,17764. In order to disregard short-term
fluctuations and rather focus on long-term trends ofj(t), a
moving-average filter of 11 consecutive segments was
plied.

In Ref. @13#, we have compared meanj values obtained
from the interictal EEG recorded from within the epilept
focus and from other brain areas of epilepsy patients. A c
rect localization of the epileptic focus could be derived fro
increased values ofj in all investigated cases. Following th
basic concept of Ref.@2#, we hypothesized that the preicta
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state would be reflected in an increase ofj ~cf. Ref. @4#!, and
accordingly designed a simple evaluation forj(t) ~Fig. 2!.

First, a reference level was defined by the median^j&50 of
the distribution of allj(t) values for each EEG channel. Fo
every intervalB between two crossings ofj(t) and ^j&50,
we quantify the areaA5( tPB@j(t)2^j&50#. The evaluation
was restricted to positive areas, which we will refer to
peaks. Let s denote the number of seizures that were direc
preceded by a peak instead of a drop ofj(t) below the ref-
erence level. For those seizures, this peak is termed as
ictal and its area is denoted byPi for i 51, . . . ,s. All other
peaks are termed as interictal and their areas are denote
I j for j 51, . . . ,k, with k being the total number of intericta
peaks. ThePi were only integrated up to the seizure ons
times. In order to compare the distributions ofPi andI j , we
calculated f [(^Pi&502^I j&50)/(^Pi&501^I j&50) from the
medians of the two distributions. Finally, we definedF
[^ f & as the average over all channels. By construction,f and
F are restricted to@21,1# and should tend to zero if th
distributions of preictal and interictal peaks match.

Figure 3 shows the distribution function ofI j along with
corresponding values ofPi determined for the original sei
zure onset times for one exemplary EEG channel. Among
s57 preictal peaks, five peaks were found whose area
ceeded the median area of the interictal peaks. For this c
nel, we obtainedf 50.94. After averaging the results over a
channels, we obtainedF50.81 for the original seizure times
At first glance, this value appears quite promising in t
sense that it might indicate that the preictal peaks were m
pronounced than the interictal peaks, confirming that the p
ictal state is indeed reflected in an increase ofj.

This interpretation, however, does not necessarily ho
Suppose we selected peaks randomly from a sequence
the one depicted in Fig. 1. If the probability to be selec

FIG. 2. Parametrization of an exemplaryj(t)2^j&50 profile.
Data from the ictal and postictal state were included for comple
ness. Gray shaded areas denote interictal peaks (I j ). A preictal peak
(Pi) is shown in black.

FIG. 3. Distribution function prob$area,A% for interictal
peaksI j ( l ine) along with valuesP1 , . . . ,P7 (circles) obtained
for the original seizure times for one exemplary channel. The
vertical lines indicate the medians^I j&50 and ^Pi&50, respectively.
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were the same for all peaks, scores with areas below
above the median of the distribution of areas of all pea
would be equiprobable. If we, in contrast, drew samp
from such a sequence by randomly selecting points in tim
we would be more likely to draw long peaks than to dra
short peaks. Consequently, the area of our samples w
tend to exceed the aforementioned median. Taking this
account, a value ofF.0 would be expected even under th
assumption of our null hypothesis. Hence, interpreting
significance of the observed value ofF appears quite diffi-
cult. One could consider a normalization or correction ofF
based on the distribution function ofI j but this might not be
sufficient to eliminate any bias caused by further, unfores
problems and pitfalls.

A more straightforward answer can be obtained from
application of seizure time surrogates. From Fig. 4, it b
comes evident that theF value obtained for the original sei
zure times was within the distribution obtained for the s
zure time surrogates. On the level of single EEG chann
i.e., based onf values, the null hypothesis could be reject
for four of the 48 channels. However, if a test with a nomin
size ofa50.05 is repeated 48 times, there is a 9% chanc
obtain up to four rejections. Hence, we could not reject
null hypothesis of the nonexistence of a preictal state
means of the applied seizure prediction statistics.

The fact that the null hypothesis could not be rejec
does by no means prove its correctness. Rather, there
numerous alternative explanations for this result. For sev
reasons, the applied seizure prediction statistics might sim
lack any discriminative power for the hypothesis test: Ev
thoughj did allow a characterization of the spatial distrib
tion of the interictal epileptic dynamics@13#, it may still be
incapable to detect any feature of the EEG specific for
preictal state. An explanation for such a finding would
that the interictal epileptic dynamics and the seizu
generating process are two distinct dynamical phenome
each imposing different features on the EEG. On the ot
hand, even ifj were capable to detect the preictal state,
relevant information could be missed by our rather sim
evaluation ofj(t). Furthermore, our study was based on t
EEG recording of only one epilepsy patient. It would b
highly speculative to draw any conclusions about the mu
faceted disease epilepsy from such a limited sample. It is
beyond the scope of the present study to prove or dispr
the existence of a preictal state. Rather, the aim was to
pose a simple technique that allows one to validate the
formance of seizure prediction statistics. In some cases,

-

o

FIG. 4. F values for the original seizure times (s) and the
distribution of 19 seizure time surrogates (3).
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if only a collection of very short recordings each containi
one seizure is available, a randomization of seizure on
times might not be possible. In these cases, one could
domize the time course of the characterizing measure
keep the original seizure times fixed. For this purpose,
technique of constrained randomization@9# could readily be
employed.

Further studies are underway which apply seizure ti
surrogates in combination with different seizure predict
ro
l,

s

s
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statistics and to larger samples of the EEG data to furt
elucidate the problem of preictal state detection@17#. In this
context, we expect seizure time surrogates to be a powe
tool to differentiate statistics unsuited for a detection of t
preictal state from more promising approaches.
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